I. Multiple Choice Questions (Type-I)

1. Which of the following conditions favours the existence of a substance in the solid state?
 (i) High temperature
 (ii) Low temperature
 (iii) High thermal energy
 (iv) Weak cohesive forces

2. Which of the following is not a characteristic of a crystalline solid?
 (i) Definite and characteristic heat of fusion.
 (ii) Isotropic nature.
 (iii) A regular periodically repeated pattern of arrangement of constituent particles in the entire crystal.
 (iv) A true solid

3. Which of the following is an amorphous solid?
 (i) Graphite (C)
 (ii) Quartz glass (SiO₂)
 (iii) Chrome alum
 (iv) Silicon carbide (SiC)

4. Which of the following arrangements shows schematic alignment of magnetic moments of antiferromagnetic substances?
 (i) \[\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \]
 (ii) \[\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \]
5. Which of the following is true about the value of refractive index of quartz glass?
 (i) Same in all directions
 (ii) Different in different directions
 (iii) Cannot be measured
 (iv) Always zero

6. Which of the following statement is not true about amorphous solids?
 (i) On heating they may become crystalline at certain temperature.
 (ii) They may become crystalline on keeping for long time.
 (iii) Amorphous solids can be moulded by heating.
 (iv) They are anisotropic in nature.

7. The sharp melting point of crystalline solids is due to ___________.
 (i) a regular arrangement of constituent particles observed over a short distance in the crystal lattice.
 (ii) a regular arrangement of constituent particles observed over a long distance in the crystal lattice.
 (iii) same arrangement of constituent particles in different directions.
 (iv) different arrangement of constituent particles in different directions.

8. Iodine molecules are held in the crystals lattice by ____________.
 (i) london forces
 (ii) dipole-dipole interactions
 (iii) covalent bonds
 (iv) coulombic forces

9. Which of the following is a network solid?
 (i) SO₂ (Solid)
 (ii) I₂
 (iii) Diamond
 (iv) H₂O (Ice)

10. Which of the following solids is not an electrical conductor?
 (A) Mg (s) (B) TiO (s) (C) I₂ (s) (D) H₂O (s)
 (i) (A) only
 (ii) (B) Only
 (iii) (C) and (D)
 (iv) (B), (C) and (D)
11. Which of the following is not the characteristic of ionic solids?
 (i) Very low value of electrical conductivity in the molten state.
 (ii) Brittle nature.
 (iii) Very strong forces of interactions.
 (iv) Anisotropic nature.

12. Graphite is a good conductor of electricity due to the presence of ________.
 (i) lone pair of electrons
 (ii) free valence electrons
 (iii) cations
 (iv) anions

13. Which of the following oxides behaves as conductor or insulator depending upon temperature?
 (i) TiO
 (ii) SiO$_2$
 (iii) TiO$_3$
 (iv) MgO

14. Which of the following oxides shows electrical properties like metals?
 (i) SiO$_2$
 (ii) MgO
 (iii) SO$_2$(s)
 (iv) CrO$_2$

15. The lattice site in a pure crystal cannot be occupied by ________.
 (i) molecule
 (ii) ion
 (iii) electron
 (iv) atom

16. Graphite cannot be classified as ________.
 (i) conducting solid
 (ii) network solid
 (iii) covalent solid
 (iv) ionic solid

17. Cations are present in the interstitial sites in ________.
 (i) Frenkel defect
 (ii) Schottky defect
 (iii) Vacancy defect
 (iv) Metal deficiency defect
18. Schottky defect is observed in crystals when __________.
 (i) some cations move from their lattice site to interstitial sites.
 (ii) equal number of cations and anions are missing from the lattice.
 (iii) some lattice sites are occupied by electrons.
 (iv) some impurity is present in the lattice.

19. Which of the following is true about the charge acquired by \(p \)-type semiconductors?
 (i) positive
 (ii) neutral
 (iii) negative
 (iv) depends on concentration of \(p \) impurity

20. To get a \(n \)-type semiconductor from silicon, it should be doped with a substance with valence__________.
 (i) 2
 (ii) 1
 (iii) 3
 (iv) 5

21. The total number of tetrahedral voids in the face centred unit cell is __________.
 (i) 6
 (ii) 8
 (iii) 10
 (iv) 12

22. Which of the following point defects are shown by AgBr(s) crystals?
 (A) Schottky defect (B) Frenkel defect
 (C) Metal excess defect (D) Metal deficiency defect
 (i) (A) and (B)
 (ii) (C) and (D)
 (iii) (A) and (C)
 (iv) (B) and (D)

23. In which pair most efficient packing is present?
 (i) \(hcp \) and \(bcc \)
 (ii) \(hcp \) and \(ccp \)
 (iii) \(bcc \) and \(ccp \)
 (iv) \(bcc \) and simple cubic cell

24. The percentage of empty space in a body centred cubic arrangement is __________.
 (i) 74
25. Which of the following statement is **not** true about the hexagonal close packing?
 (i) The coordination number is 12.
 (ii) It has 74% packing efficiency.
 (iii) Tetrahedral voids of the second layer are covered by the spheres of the third layer.
 (iv) In this arrangement spheres of the fourth layer are exactly aligned with those of the first layer.

26. In which of the following structures coordination number for cations and anions in the packed structure will be same?
 (i) Cl\(^{-}\) ion form fcc lattice and Na\(^{+}\) ions occupy all octahedral voids of the unit cell.
 (ii) Ca\(^{2+}\) ions form fcc lattice and F\(^{-}\) ions occupy all the eight tetrahedral voids of the unit cell.
 (iii) O\(^{2-}\) ions form fcc lattice and Na\(^{+}\) ions occupy all the eight tetrahedral voids of the unit cell.
 (iv) S\(^{2-}\) ions form fcc lattice and Zn\(^{2+}\) ions go into alternate tetrahedral voids of the unit cell.

27. What is the coordination number in a square close packed structure in two dimensions?
 (i) 2
 (ii) 3
 (iii) 4
 (iv) 6

28. Which kind of defects are introduced by doping?
 (i) Dislocation defect
 (ii) Schottky defect
 (iii) Frenkel defects
 (iv) Electronic defects

29. Silicon doped with electron-rich impurity forms ________.
 (i) \(p\)-type semiconductor
 (ii) \(n\)-type semiconductor
 (iii) intrinsic semiconductor
 (iv) insulator
30. Which of the following statements is not true?
 (i) Paramagnetic substances are weakly attracted by magnetic field.
 (ii) Ferromagnetic substances cannot be magnetised permanently.
 (iii) The domains in antiferromagnetic substances are oppositely oriented with respect to each other.
 (iv) Pairing of electrons cancels their magnetic moment in the diamagnetic substances.

31. Which of the following is not true about the ionic solids?
 (i) Bigger ions form the close packed structure.
 (ii) Smaller ions occupy either the tetrahedral or the octahedral voids depending upon their size.
 (iii) Occupation of all the voids is not necessary.
 (iv) The fraction of octahedral or tetrahedral voids occupied depends upon the radii of the ions occupying the voids.

32. A ferromagnetic substance becomes a permanent magnet when it is placed in a magnetic field because ________.
 (i) all the domains get oriented in the direction of magnetic field.
 (ii) all the domains get oriented in the direction opposite to the direction of magnetic field.
 (iii) domains get oriented randomly.
 (iv) domains are not affected by magnetic field.

33. The correct order of the packing efficiency in different types of unit cells is ________.
 (i) \(fcc < bcc < \text{simple cubic} \)
 (ii) \(fcc > bcc > \text{simple cubic} \)
 (iii) \(fcc < bcc > \text{simple cubic} \)
 (iv) \(bcc < fcc > \text{simple cubic} \)

34. Which of the following defects is also known as dislocation defect?
 (i) Frenkel defect
 (ii) Schottky defect
 (iii) Non-stoichiometric defect
 (iv) Simple interstitial defect

35. In the cubic close packing, the unit cell has ________.
 (i) 4 tetrahedral voids each of which is shared by four adjacent unit cells.
 (ii) 4 tetrahedral voids within the unit cell.
 (iii) 8 tetrahedral voids each of which is shared by four adjacent unit cells.
 (iv) 8 tetrahedral voids within the unit cells.
36. The edge lengths of the unit cells in terms of the radius of spheres constituting \textit{fcc}, \textit{bcc} and simple cubic unit cell are respectively______.

(i) \(2\sqrt{2}r, \frac{4r}{\sqrt{3}}, 2r\)

(ii) \(\frac{4r}{\sqrt{3}}, 2\sqrt{2}r, 2r\)

(iii) \(2r, 2\sqrt{2}r, \frac{4r}{\sqrt{3}}\)

(iv) \(2r, \frac{4r}{\sqrt{3}}, 2\sqrt{2}r\)

37. Which of the following represents correct order of conductivity in solids?

(i) \(\kappa_{\text{metals}} \gg \kappa_{\text{insulators}} < \kappa_{\text{semiconductors}}\)

(ii) \(\kappa_{\text{metals}} \ll \kappa_{\text{insulators}} < \kappa_{\text{semiconductors}}\)

(iii) \(\kappa_{\text{metals}} \approx \kappa_{\text{semiconductors}} > \kappa_{\text{insulators}} = 0\)

(iv) \(\kappa_{\text{metals}} < \kappa_{\text{semiconductors}} > \kappa_{\text{insulators}} \neq 0\)

\[\text{II. Multiple Choice Questions (Type-II)}\]

\textbf{Note :} In the following questions two or more options may be correct.

38. Which of the following is not true about the voids formed in 3 dimensional hexagonal close packed structure?

(i) A tetrahedral void is formed when a sphere of the second layer is present above triangular void in the first layer.

(ii) All the triangular voids are not covered by the spheres of the second layer.

(iii) Tetrahedral voids are formed when the triangular voids in the second layer lie above the triangular voids in the first layer and the triangular shapes of these voids do not overlap.

(iv) Octahedral voids are formed when the triangular voids in the second layer exactly overlap with similar voids in the first layer.

39. The value of magnetic moment is zero in the case of antiferromagnetic substances because the domains______.

(i) get oriented in the direction of the applied magnetic field.

(ii) get oriented opposite to the direction of the applied magnetic field.

(iii) are oppositely oriented with respect to each other without the application of magnetic field.

(iv) cancel out each other’s magnetic moment.
40. Which of the following statements are not true?
 (i) Vacancy defect results in a decrease in the density of the substance.
 (ii) Interstitial defects result in an increase in the density of the substance.
 (iii) Impurity defect has no effect on the density of the substance.
 (iv) Frankel defect results in an increase in the density of the substance.

41. Which of the following statements are true about metals?
 (i) Valence band overlaps with conduction band.
 (ii) The gap between valence band and conduction band is negligible.
 (iii) The gap between valence band and conduction band cannot be determined.
 (iv) Valence band may remain partially filled.

42. Under the influence of electric field, which of the following statements is true about the movement of electrons and holes in a \(p \)-type semiconductor?
 (i) Electron will move towards the positively charged plate through electron holes.
 (ii) Holes will appear to be moving towards the negatively charged plate.
 (iii) Both electrons and holes appear to move towards the positively charged plate.
 (iv) Movement of electrons is not related to the movement of holes.

43. Which of the following statements are true about semiconductors?
 (i) Silicon doped with electron rich impurity is a \(p \)-type semiconductor.
 (ii) Silicon doped with an electron rich impurity is an \(n \)-type semiconductor.
 (iii) Delocalised electrons increase the conductivity of doped silicon.
 (iv) An electron vacancy increases the conductivity of \(n \)-type semiconductor.

44. An excess of potassium ions makes KCl crystals appear violet or lilac in colour since ________.
 (i) some of the anionic sites are occupied by an unpaired electron.
 (ii) some of the anionic sites are occupied by a pair of electrons.
 (iii) there are vacancies at some anionic sites.
 (iv) F-centres are created which impart colour to the crystals.

45. The number of tetrahedral voids per unit cell in NaCl crystal is ________.
 (i) 4
 (ii) 8
 (iii) twice the number of octahedral voids.
 (iv) four times the number of octahedral voids.
46. Amorphous solid can also be called ________.
 (i) pseudo solids
 (ii) true solids
 (iii) super cooled liquids
 (iv) super cooled solids

47. A perfect crystal of silicon (Fig. 1.1) is doped with some elements as given in the options. Which of these options show n-type semiconductors?

48. Which of the following statements are correct?
 (i) Ferrimagnetic substances lose ferrimagnetism on heating and become paramagnetic.
 (ii) Ferrimagnetic substances do not lose ferrimagnetism on heating and remain ferrimagnetic.
 (iii) Antiferromagnetic substances have domain structures similar to ferromagnetic substances and their magnetic moments are not cancelled by each other.
 (iv) In ferromagnetic substances all the domains get oriented in the direction of magnetic field and remain as such even after removing magnetic field.
49. Which of the following features are **not** shown by quartz glass?
 (i) This is a crystalline solid.
 (ii) Refractive index is same in all the directions.
 (iii) This has definite heat of fusion.
 (iv) This is also called super cooled liquid.

50. Which of the following **cannot** be regarded as molecular solid?
 (i) SiC (Silicon carbide)
 (ii) AlN
 (iii) Diamond
 (iv) I$_2$

51. In which of the following arrangements octahedral voids are formed?
 (i) hcp
 (ii) bcc
 (iii) simple cubic
 (iv) fcc

52. Frenkel defect is also known as ________.
 (i) stoichiometric defect
 (ii) dislocation defect
 (iii) impurity defect
 (iv) non-stoichiometric defect

53. Which of the following defects decrease the density?
 (i) Interstitial defect
 (ii) Vacancy defect
 (iii) Frankel defect
 (iv) Schottky defect

III. Short Answer Type

54. Why are liquids and gases categorised as fluids?

55. Why are solids incompressible?

56. Inspite of long range order in the arrangement of particles why are the crystals usually not perfect?

57. Why does table salt, NaCl, sometimes appear yellow in colour?

58. Why is FeO (s) not formed in stoichiometric composition?

59. Why does white ZnO (s) become yellow upon heating?
60. Why does the electrical conductivity of semiconductors increase with rise in temperature?

61. Explain why does conductivity of germanium crystals increase on doping with gallium.

62. In a compound, nitrogen atoms (N) make cubic close packed lattice and metal atoms (M) occupy one-third of the tetrahedral voids present. Determine the formula of the compound formed by M and N?

63. Under which situations can an amorphous substance change to crystalline form?

IV. Matching Type

Note: In the following questions match the items given in Column I with the items given in Column II. In some questions more than one item of Column I and Column II may match.

64. Match the defects given in Column I with the statements in given Column II.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) Simple vacancy defect</td>
<td>(a) shown by non-ionic solids and increases density of the solid.</td>
</tr>
<tr>
<td>(ii) Simple interstitial defect</td>
<td>(b) shown by ionic solids and decreases density of the solid.</td>
</tr>
<tr>
<td>(iii) Frenkel defect</td>
<td>(c) shown by non ionic solids and density of the solid decreases</td>
</tr>
<tr>
<td>(iv) Schottky defect</td>
<td>(d) shown by ionic solids and density of the solid remains the same.</td>
</tr>
</tbody>
</table>

65. Match the type of unit cell given in Column I with the features given in Column II.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) Primitive cubic unit cell</td>
<td>(a) Each of the three perpendicular edges compulsorily have the different edge length i.e; (a \neq b \neq c).</td>
</tr>
<tr>
<td>(ii) Body centred cubic unit cell</td>
<td>(b) Number of atoms per unit cell is one.</td>
</tr>
<tr>
<td>(iii) Face centred cubic unit cell</td>
<td>(c) Each of the three perpendicular edges compulsorily have the same edge length i.e; (a = b = c).</td>
</tr>
<tr>
<td>(iv) End centred orthorhombic unit cell</td>
<td>(d) In addition to the contribution from the corner atoms the number of atoms present in a unit cell is one.</td>
</tr>
<tr>
<td></td>
<td>(e) In addition to the contribution from the corner atoms the number of atoms present in a unit cell is three.</td>
</tr>
</tbody>
</table>
66. Match the types of defect given in Column I with the statement given in Column II.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) Impurity defect</td>
<td>(a) NaCl with anionic sites called F-centres</td>
</tr>
<tr>
<td>(ii) Metal excess defect</td>
<td>(b) FeO with Fe$^{3+}$</td>
</tr>
<tr>
<td>(iii) Metal deficiency</td>
<td>(c) NaCl with Sr$^{2+}$ and some cationic sites vacant</td>
</tr>
</tbody>
</table>

67. Match the items given in Column I with the items given in Column II.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) Mg in solid state</td>
<td>(a) p-Type semiconductor</td>
</tr>
<tr>
<td>(ii) MgCl$_2$ in molten</td>
<td>(b) n-Type semiconductor</td>
</tr>
<tr>
<td>(iii) Silicon with phosphorus</td>
<td>(c) Electrolytic conductors</td>
</tr>
<tr>
<td>(iv) Germanium with boron</td>
<td>(d) Electronic conductors</td>
</tr>
</tbody>
</table>

68. Match the type of packing given in Column I with the items given in Column II.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) Square close packing in two dimensions</td>
<td>(a) Triangular voids</td>
</tr>
<tr>
<td>(ii) Hexagonal close packing in two dimensions</td>
<td>(b) Pattern of spheres is repeated in every fourth layer</td>
</tr>
<tr>
<td>(iii) Hexagonal close packing in three dimensions</td>
<td>(c) Coordination number 4</td>
</tr>
<tr>
<td>(iv) Cubic close packing in three dimensions</td>
<td>(d) Pattern of sphere is repeated in alternate layers</td>
</tr>
</tbody>
</table>

V. Assertion and Reason Type

Note: In the following questions a statement of assertion followed by a statement of reason is given. Choose the correct answer out of the following choices.

(i) Assertion and reason both are correct statements and reason is correct explanation for assertion.
(ii) Assertion and reason both are correct statements but reason is not correct explanation for assertion.
(iii) Assertion is correct statement but reason is wrong statement.
(iv) Assertion is wrong statement but reason is correct statement.
69. **Assertion**: The total number of atoms present in a simple cubic unit cell is one.
 Reason: Simple cubic unit cell has atoms at its corners, each of which is shared between eight adjacent unit cells.

70. **Assertion**: Graphite is a good conductor of electricity however diamond belongs to the category of insulators.
 Reason: Graphite is soft in nature on the other hand diamond is very hard and brittle.

71. **Assertion**: Total number of octahedral voids present in unit cell of cubic close packing including the one that is present at the body centre, is four.
 Reason: Besides the body centre there is one octahedral void present at the centre of each of the six faces of the unit cell and each of which is shared between two adjacent unit cells.

72. **Assertion**: The packing efficiency is maximum for the fcc structure.
 Reason: The coordination number is 12 in fcc structures.

73. **Assertion**: Semiconductors are solids with conductivities in the intermediate range from 10^{-6} – 10^4 ohm$^{-1}$m$^{-1}$.
 Reason: Intermediate conductivity in semiconductor is due to partially filled valence band.

VI. Long Answer Type

74. With the help of a labelled diagram show that there are four octahedral voids per unit cell in a cubic close packed structure.

75. Show that in a cubic close packed structure, eight tetrahedral voids are present per unit cell.

76. How does the doping increase the conductivity of semiconductors?

77. A sample of ferrous oxide has actual formula $\text{Fe}_{0.93} \text{O}_{1.00}$. In this sample what fraction of metal ions are Fe^{2+} ions? What type of nonstoichiometric defect is present in this sample?
I. Multiple Choice Questions (Type-I)

1. (ii) 2. (ii) 3. (ii) 4. (iv) 5. (i) 6. (iv)
7. (ii) 8. (i) 9. (iii) 10. (iii) 11. (i) 12. (ii)
13. (iii) 14. (iv) 15. (iii) 16. (iv) 17. (i) 18. (ii)
31. (iv) 32. (i) 33. (ii) 34. (i) 35. (iv) 36. (i)
37. (i)

II. Multiple Choice Questions (Type-II)

38. (iii), (iv) 39. (iii), (iv) 40. (iii), (iv) 41. (i), (ii), (iv)
42. (i), (ii) 43. (ii), (iii) 44. (i), (iv) 45. (ii), (iii)
46. (i), (iii) 47. (i), (iii) 48. (i), (iv) 49. (i), (iii)
50. (i), (ii), (iii) 51. (i), (iv) 52. (i), (ii) 53. (ii), (iv)

III. Short Answer Type

54. The liquids and gases have a property to flow i.e. the molecules can move past and tumble over one another freely. Hence, they have been categorised as fluids.

55. The distance between the constituent particles (atoms, ions, molecules etc.) is very less in solids. On bringing them still closer repulsion will start between electron clouds of these particles. Hence, they cannot be brought further close to each other.

56. Crystals have long range repeated pattern of arrangement of constituent particles but in the process of crystallisation some deviations from the ideal arrangement (i.e. defects) may be introduced, therefore, crystals are usually not perfect.

57. Yellow colour in sodium chloride is due to metal excess defect due to which unpaired electrons occupy anionic sites. These sites are called F-centres. These electrons absorb energy from the visible region for the excitation which makes crystal appear yellow.

58. In the crystals of FeO, some of the Fe$^{2+}$ cations are replaced by Fe$^{3+}$ ions. Three Fe$^{2+}$ ions are replaced by two Fe$^{3+}$ ions to make up for the loss of positive charge. Eventually there would be less amount of metal as compared to stoichiometric proportion.
59. On heating ZnO loses oxygen according to the following reaction.

\[\text{ZnO}^{\text{heating}} \rightarrow \text{Zn}^{2+} + \frac{1}{2} \text{O}_2 + 2e^- \]

\(\text{Zn}^{2+} \) ions and electrons move to interstitial sites and F-centres are created which impart yellow colour to \(\text{ZnO(s)} \).

60. The gap between conduction band and valence band is small in semiconductors (Fig. 1.1), therefore, electrons from the valence band can jump to the conduction band on increasing temperature. Thus they become more conducting as the temperature increases.

61. On doping germanium with gallium some of the positions of lattice of germanium are occupied by gallium. Gallium atom has only three valence electrons. Therefore, fourth valency of nearby germanium atom is not satisfied. The place remains vacant. This place is deficient of electrons and is therefore called electron hole or electron vacancy. Electron from neighbouring atom comes and fills the gap, thereby creating a hole in its original position. Under the influence of electric field electrons move towards positively charged plates through these holes and conduct electricity. The holes appear to move towards negatively charged plates.

62. \(\text{M}_2\text{N}_3 \)

63. See page no. 3 of NCERT textbook for Class XII.

IV. Matching Type

64. (i) \(\rightarrow \) (c) (ii) \(\rightarrow \) (a) (iii) \(\rightarrow \) (d) (iv) \(\rightarrow \) (b)

65. (i) \(\rightarrow \) (b), (c) (ii) \(\rightarrow \) (c), (d) (iii) \(\rightarrow \) (c), (e) (iv) \(\rightarrow \) (a), (d)

66. (i) \(\rightarrow \) (c) (ii) \(\rightarrow \) (a) (iii) \(\rightarrow \) (b)

67. (i) \(\rightarrow \) (d) (ii) \(\rightarrow \) (c) (iii) \(\rightarrow \) (b) (iv) \(\rightarrow \) (a)

68. (i) \(\rightarrow \) (c) (ii) \(\rightarrow \) (a) (iii) \(\rightarrow \) (d) (iv) \(\rightarrow \) (b)

V. Assertion and Reason Type

69. (i) 70. (ii) 71. (iii) 72. (ii) 73. (iii)
VI. Long Answer Type

74. [Hint : Draw structure and discuss]

75. [Hint : Draw structure and discuss]

76. See page no. 26 of NCERT textbook for Class XII.

77. Let the formula of sample be

\[(\text{Fe}^{2+})_x (\text{Fe}^{3+})_y \text{O}\.

On looking at the given formula of the compound

\[x + y = 0.93 \quad \ldots (1)\]

Total positive charge on ferrous and ferric ions should balance the two units of negative charge on oxygen. Therefore,

\[2x + 3y = 2 \quad \ldots (2)\]

\[\Rightarrow x + \frac{3}{2}y = 1 \quad \ldots (3)\]

On subtracting equation (1) from equation (3) we have

\[\frac{3}{2}y - y = 1 - 0.93\]

\[\Rightarrow \frac{1}{2}y = 0.07\]

\[\Rightarrow y = 0.14\]

On putting the value of \(y\) in equation (1) we get,

\[x + 0.14 = 0.93\]

\[\Rightarrow x = 0.93 - 0.14\]

\[x = 0.79\]

\[
\text{Fraction of } \text{Fe}^{2+} \text{ ions present in the sample } = \frac{0.79}{0.93} = 0.81
\]

Metal deficiency defect is present in the sample because iron is less in amount than that required for stoichiometric composition.
1. Which of the following units is useful in relating concentration of solution with its vapour pressure?
 (i) mole fraction
 (ii) parts per million
 (iii) mass percentage
 (iv) molality

2. On dissolving sugar in water at room temperature solution feels cool to touch. Under which of the following cases dissolution of sugar will be most rapid?
 (i) Sugar crystals in cold water.
 (ii) Sugar crystals in hot water.
 (iii) Powdered sugar in cold water.
 (iv) Powdered sugar in hot water.

3. At equilibrium the rate of dissolution of a solid solute in a volatile liquid solvent is ________.
 (i) less than the rate of crystallisation
 (ii) greater than the rate of crystallisation
 (iii) equal to the rate of crystallisation
 (iv) zero

4. A beaker contains a solution of substance ‘A’. Precipitation of substance ‘A’ takes place when small amount of ‘A’ is added to the solution. The solution is ________.
 (i) saturated
(ii) supersaturated
(iii) unsaturated
(iv) concentrated

5. Maximum amount of a solid solute that can be dissolved in a specified amount of a given liquid solvent does **not** depend upon ____________.
 (i) Temperature
 (ii) Nature of solute
 (iii) Pressure
 (iv) Nature of solvent

6. Low concentration of oxygen in the blood and tissues of people living at high altitude is due to ____________.
 (i) low temperature
 (ii) low atmospheric pressure
 (iii) high atmospheric pressure
 (iv) both low temperature and high atmospheric pressure

7. Considering the formation, breaking and strength of hydrogen bond, predict which of the following mixtures will show a positive deviation from Raoult’s law?
 (i) Methanol and acetone.
 (ii) Chloroform and acetone.
 (iii) Nitric acid and water.
 (iv) Phenol and aniline.

8. Colligative properties depend on ____________.
 (i) the nature of the solute particles dissolved in solution.
 (ii) the number of solute particles in solution.
 (iii) the physical properties of the solute particles dissolved in solution.
 (iv) the nature of solvent particles.

9. Which of the following aqueous solutions should have the highest boiling point?
 (i) 1.0 M NaOH
 (ii) 1.0 M Na₂SO₄
 (iii) 1.0 M NH₄NO₃
 (iv) 1.0 M KNO₃

10. The unit of ebullioscopic constant is ____________.
 (i) K kg mol⁻¹ or K (molality)⁻¹
 (ii) mol kg K⁻¹ or K⁻¹(molality)
(iii) kg mol\(^{-1}\) K\(^{-1}\) or K\(^{-1}\) (molality)\(^{-1}\)
(iv) K mol kg\(^{-1}\) or K (molality)

11. In comparison to a 0.01 M solution of glucose, the depression in freezing point of a 0.01 M MgCl\(_2\) solution is ____________.
 (i) the same
 (ii) about twice
 (iii) about three times
 (iv) about six times

12. An unripe mango placed in a concentrated salt solution to prepare pickle, shrivels because ____________.
 (i) it gains water due to osmosis.
 (ii) it loses water due to reverse osmosis.
 (iii) it gains water due to reverse osmosis.
 (iv) it loses water due to osmosis.

13. At a given temperature, osmotic pressure of a concentrated solution of a substance ____________.
 (i) is higher than that at a dilute solution.
 (ii) is lower than that of a dilute solution.
 (iii) is same as that of a dilute solution.
 (iv) cannot be compared with osmotic pressure of dilute solution.

14. Which of the following statements is false?
 (i) Two different solutions of sucrose of same molality prepared in different solvents will have the same depression in freezing point.
 (ii) The osmotic pressure of a solution is given by the equation \(\Pi = CRT\) (where C is the molality of the solution).
 (iii) Decreasing order of osmotic pressure for 0.01 M aqueous solutions of barium chloride, potassium chloride, acetic acid and sucrose is \(\text{BaCl}_2 > \text{KCl} > \text{CH}_3\text{COOH} > \text{sucrose}\).
 (iv) According to Raoult’s law, the vapour pressure exerted by a volatile component of a solution is directly proportional to its mole fraction in the solution.

15. The values of Van’t Hoff factors for KCl, NaCl and K\(_2\)SO\(_4\), respectively, are ____________.
 (i) 2, 2 and 2
 (ii) 2, 2 and 3
 (iii) 1, 1 and 2
 (iv) 1, 1 and 1
16. Which of the following statements is **false**?
 (i) Units of atmospheric pressure and osmotic pressure are the same.
 (ii) In reverse osmosis, solvent molecules move through a semipermeable membrane from a region of lower concentration of solute to a region of higher concentration.
 (iii) The value of molal depression constant depends on nature of solvent.
 (iv) Relative lowering of vapour pressure, is a dimensionless quantity.

17. Value of Henry’s constant K_H _________.
 (i) increases with increase in temperature.
 (ii) decreases with increase in temperature.
 (iii) remains constant.
 (iv) first increases then decreases.

18. The value of Henry’s constant K_H is ___________.
 (i) greater for gases with higher solubility.
 (ii) greater for gases with lower solubility.
 (iii) constant for all gases.
 (iv) not related to the solubility of gases.

19. Consider the Fig. 2.1 and mark the correct option.
 (i) water will move from side (A) to side (B) if a pressure lower than osmotic pressure is applied on piston (B).
 (ii) water will move from side (B) to side (A) if a pressure greater than osmotic pressure is applied on piston (B).
 (iii) water will move from side (B) to side (A) if a pressure equal to osmotic pressure is applied on piston (B).
 (iv) water will move from side (A) to side (B) if pressure equal to osmotic pressure is applied on piston (A).

20. We have three aqueous solutions of NaCl labelled as ‘A’, ‘B’ and ‘C’ with concentrations 0.1M, 0.01M and 0.001M, respectively. The value of van’t Hoff factor for these solutions will be in the order______.
 (i) $i_A < i_B < i_C$
 (ii) $i_A > i_B > i_C$
 (iii) $i_A = i_B = i_C$
 (iv) $i_A < i_B > i_C$
21. On the basis of information given below mark the correct option.

Information:

(A) In bromoethane and chloroethane mixture intermolecular interactions of A–A and B–B type are nearly same as A–B type interactions.

(B) In ethanol and acetone mixture A–A or B–B type intermolecular interactions are stronger than A–B type interactions.

(C) In chloroform and acetone mixture A–A or B–B type intermolecular interactions are weaker than A–B type interactions.

(i) Solution (B) and (C) will follow Raoult’s law.

(ii) Solution (A) will follow Raoult’s law.

(iii) Solution (B) will show negative deviation from Raoult’s law.

(iv) Solution (C) will show positive deviation from Raoult’s law.

22. Two beakers of capacity 500 mL were taken. One of these beakers, labelled as "A", was filled with 400 mL water whereas the beaker labelled "B" was filled with 400 mL of 2 M solution of NaCl. At the same temperature both the beakers were placed in closed containers of same material and same capacity as shown in Fig. 2.2.

![Fig. 2.2](image)

At a given temperature, which of the following statement is correct about the vapour pressure of pure water and that of NaCl solution.

(i) vapour pressure in container (A) is more than that in container (B).

(ii) vapour pressure in container (A) is less than that in container (B).

(iii) vapour pressure is equal in both the containers.

(iv) vapour pressure in container (B) is twice the vapour pressure in container (A).

23. If two liquids A and B form minimum boiling azeotrope at some specific composition then ______________.

(i) A–B interactions are stronger than those between A–A or B–B.

(ii) vapour pressure of solution increases because more number of molecules of liquids A and B can escape from the solution.

(iii) vapour pressure of solution decreases because less number of molecules of only one of the liquids escape from the solution.

(iv) A–B interactions are weaker than those between A–A or B–B.

24. 4L of 0.02 M aqueous solution of NaCl was diluted by adding one litre of water. The molality of the resultant solution is ______________.

(i) 0.004
(ii) 0.008
(iii) 0.012
(iv) 0.016

25. On the basis of information given below mark the correct option.

Information : On adding acetone to methanol some of the hydrogen bonds between methanol molecules break.

(i) At specific composition methanol-acetone mixture will form minimum boiling azeotrope and will show positive deviation from Raoult’s law.
(ii) At specific composition methanol-acetone mixture forms maximum boiling azeotrope and will show positive deviation from Raoult’s law.
(iii) At specific composition methanol-acetone mixture will form minimum boiling azeotrope and will show negative deviation from Raoult’s law.
(iv) At specific composition methanol-acetone mixture will form maximum boiling azeotrope and will show negative deviation from Raoult’s law.

26. K_1 value for Ar(g), CO$_2$(g), HCHO (g) and CH$_4$(g) are 40.39, 1.67, 1.83×10^{-5} and 0.413 respectively.

Arrange these gases in the order of their increasing solubility.

(i) HCHO < CH$_4$ < CO$_2$ < Ar
(ii) HCHO < CO$_2$ < CH$_4$ < Ar
(iii) Ar < CO$_2$ < CH$_4$ < HCHO
(iv) Ar < CH$_4$ < CO$_2$ < HCHO

II. Multiple Choice Questions (Type-II)

Note : In the following questions two or more options may be correct.

27. Which of the following factor(s) affect the solubility of a gaseous solute in the fixed volume of liquid solvent?
(a) nature of solute
(b) temperature
(c) pressure

(i) (a) and (c) at constant T
(ii) (a) and (b) at constant P
(iii) (b) and (c) only
(iv) (c) only

28. Intermolecular forces between two benzene molecules are nearly of same strength as those between two toluene molecules. For a mixture of benzene and toluene, which of the following are not true?
(i) $\Delta_{mix}H = $ zero
(ii) $\Delta_{mix}V = $ zero

Exemplar Problems, Chemistry
(iii) These will form minimum boiling azeotrope.
(iv) These will not form ideal solution.

29. Relative lowering of vapour pressure is a colligative property because _____________.
 (i) It depends on the concentration of a non electrolyte solute in solution and does not depend on the nature of the solute molecules.
 (ii) It depends on number of particles of electrolyte solute in solution and does not depend on the nature of the solute particles.
 (iii) It depends on the concentration of a non electrolyte solute in solution as well as on the nature of the solute molecules.
 (iv) It depends on the concentration of an electrolyte or nonelectrolyte solute in solution as well as on the nature of solute molecules.

30. Van’t Hoff factor i is given by the expression _____________.
 (i) \[i = \frac{\text{Normal molar mass}}{\text{Abnormal molar mass}} \]
 (ii) \[i = \frac{\text{Abnormal molar mass}}{\text{Normal molar mass}} \]
 (iii) \[i = \frac{\text{Observed colligative property}}{\text{Calculated colligative property}} \]
 (iv) \[i = \frac{\text{Calculated colligative property}}{\text{Observed colligative property}} \]

31. Isotonic solutions must have the same _____________.
 (i) solute
 (ii) density
 (iii) elevation in boiling point
 (iv) depression in freezing point

32. Which of the following binary mixtures will have same composition in liquid and vapour phase?
 (i) Benzene - Toluene
 (ii) Water-Nitric acid
 (iii) Water-Ethanol
 (iv) n-Hexane - n-Heptane

33. In isotonic solutions ________________.
 (i) solute and solvent both are same.
(ii) osmotic pressure is same.
(iii) solute and solvent may or may not be same.
(iv) solute is always same solvent may be different.

34. For a binary ideal liquid solution, the variation in total vapour pressure versus composition of solution is given by which of the curves?

35. Colligative properties are observed when _____________.
 (i) a non volatile solid is dissolved in a volatile liquid.
 (ii) a non volatile liquid is dissolved in another volatile liquid.
 (iii) a gas is dissolved in non volatile liquid.
 (iv) a volatile liquid is dissolved in another volatile liquid.

III. Short Answer Type

36. Components of a binary mixture of two liquids A and B were being separated by distillation. After some time separation of components stopped and composition of vapour phase became same as that of liquid phase. Both the components started coming in the distillate. Explain why this happened.

37. Explain why on addition of 1 mol of NaCl to 1 litre of water, the boiling point of water increases, while addition of 1 mol of methyl alcohol to one litre of water decreases its boiling point.

38. Explain the solubility rule “like dissolves like” in terms of intermolecular forces that exist in solutions.
39. Concentration terms such as mass percentage, ppm, mole fraction and molality are independent of temperature, however molarity is a function of temperature. Explain.

40. What is the significance of Henry’s Law constant K_H?

41. Why are aquatic species more comfortable in cold water in comparison to warm water?

42. (a) Explain the following phenomena with the help of Henry’s law.
 (i) Painful condition known as bends.
 (ii) Feeling of weakness and discomfort in breathing at high altitude.
 (b) Why soda water bottle kept at room temperature fizzes on opening?

43. Why is the vapour pressure of an aqueous solution of glucose lower than that of water?

44. How does sprinkling of salt help in clearing the snow covered roads in hilly areas? Explain the phenomenon involved in the process.

45. What is “semi permeable membrane”?

46. Give an example of a material used for making semipermeable membrane for carrying out reverse osmosis.

IV. Matching Type

*Note: In the following questions match the items given in Column I and Column II.

47. Match the items given in Column I and Column II.*

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) Saturated solution</td>
<td>(a) Solution having same osmotic pressure at a given temperature as that of given solution.</td>
</tr>
<tr>
<td>(ii) Binary solution</td>
<td>(b) A solution whose osmotic pressure is less than that of another.</td>
</tr>
<tr>
<td>(iii) Isotonic solution</td>
<td>(c) Solution with two components.</td>
</tr>
<tr>
<td>(iv) Hypotonic solution</td>
<td>(d) A solution which contains maximum amount of solute that can be dissolved in a given amount of solvent at a given temperature.</td>
</tr>
<tr>
<td>(v) Solid solution</td>
<td>(e) A solution whose osmotic pressure is more than that of another.</td>
</tr>
<tr>
<td>(vi) Hypertonic solution</td>
<td>(f) A solution in solid phase.</td>
</tr>
</tbody>
</table>
48. Match the items given in Column I with the type of solutions given in Column II.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) Soda water</td>
<td>(a) A solution of gas in solid</td>
</tr>
<tr>
<td>(ii) Sugar solution</td>
<td>(b) A solution of gas in gas</td>
</tr>
<tr>
<td>(iii) German silver</td>
<td>(c) A solution of solid in liquid</td>
</tr>
<tr>
<td>(iv) Air</td>
<td>(d) A solution of solid in solid</td>
</tr>
<tr>
<td>(v) Hydrogen gas in palladium</td>
<td>(e) A solution of gas in liquid</td>
</tr>
<tr>
<td></td>
<td>(f) A solution of liquid in solid</td>
</tr>
</tbody>
</table>

49. Match the laws given in Column I with expressions given in Column II.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) Raoult’s law</td>
<td>(a) $\Delta T_f = K_f m$</td>
</tr>
<tr>
<td>(ii) Henry’s law</td>
<td>(b) $\Pi = CRT$</td>
</tr>
<tr>
<td>(iii) Elevation of boiling point</td>
<td>(c) $p = x_1 p_1^o + x_2 p_2^o$</td>
</tr>
<tr>
<td>(iv) Depression in freezing point</td>
<td>(d) $\Delta T_b = K_b m$</td>
</tr>
<tr>
<td>(v) Osmotic pressure</td>
<td>(e) $p = K_H x$</td>
</tr>
</tbody>
</table>

50. Match the terms given in Column I with expressions given in Column II.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
</table>
| (i) Mass percentage | (a) Number of moles of the solute component
 Volume of solution in litres |
| (ii) Volume percentage | (b) Number of moles of a component
 Total number of moles of all the components |
| (iii) Mole fraction | (c) Volume of the solute component in solution
 Total volume of solution $\times 100$ |
| (iv) Molality | (d) Mass of the solute component in solution
 Total mass of the solution $\times 100$ |
| (v) Molarity | (e) Number of moles of the solute components
 Mass of solvent in kilograms |
V. Assertion and Reason Type

Note: In the following questions a statement of assertion followed by a statement of reason is given. Choose the correct answer out of the following choices.

(i) Assertion and reason both are correct statements and reason is correct explanation for assertion.
(ii) Assertion and reason both are correct statements but reason is not correct explanation for assertion.
(iii) Assertion is correct statement but reason is wrong statement.
(iv) Assertion and reason both are incorrect statements.
(v) Assertion is wrong statement but reason is correct statement.

51. **Assertion**: Molarity of a solution in liquid state changes with temperature.

 Reason: The volume of a solution changes with change in temperature.

52. **Assertion**: When methyl alcohol is added to water, boiling point of water increases.

 Reason: When a volatile solute is added to a volatile solvent elevation in boiling point is observed.

53. **Assertion**: When NaCl is added to water a depression in freezing point is observed.

 Reason: The lowering of vapour pressure of a solution causes depression in the freezing point.

54. **Assertion**: When a solution is separated from the pure solvent by a semi-permeable membrane, the solvent molecules pass through it from pure solvent side to the solution side.

 Reason: Diffusion of solvent occurs from a region of high concentration solution to a region of low concentration solution.

VI. Long Answer Type

55. Define the following modes of expressing the concentration of a solution. Which of these modes are independent of temperature and why?

 (i) \(w/w \) (mass percentage)
 (ii) \(V/V \) (volume percentage)
 (iii) \(w/V \) (mass by volume percentage)
 (iv) ppm. (parts per million)
 (v) \(x \) (mole fraction)
 (vi) M (Molarity)
 (vii) m (Molality)

56. Using Raoult’s law explain how the total vapour pressure over the solution is related to mole fraction of components in the following solutions.

 (i) \(CHCl_3 \) (l) and \(CH_2Cl_2 \) (l)
 (ii) NaCl(s) and \(H_2O \) (l)
57. Explain the terms ideal and non-ideal solutions in the light of forces of interactions operating between molecules in liquid solutions.

58. Why is it not possible to obtain pure ethanol by fractional distillation? What general name is given to binary mixtures which show deviation from Raoult’s law and whose components cannot be separated by fractional distillation. How many types of such mixtures are there?

59. When kept in water, raisin swells in size. Name and explain the phenomenon involved with the help of a diagram. Give three applications of the phenomenon.

60. Discuss biological and industrial importance of osmosis.

61. How can you remove the hard calcium carbonate layer of the egg without damaging its semipermeable membrane? Can this egg be inserted into a bottle with a narrow neck without distorting its shape? Explain the process involved.

62. Why is the mass determined by measuring a colligative property in case of some solutes abnormal? Discuss it with the help of Van’t Hoff factor.
I. Multiple Choice Questions (Type-I)

1. (i)
2. (iv)
3. (iii)
4. (ii), [**Hint:** If added substance dissolves, the solution is unsaturated. If it does not dissolve solution is saturated. If precipitation occurs solution is supersaturated.]
5. (i)
6. (ii), [**Hint:** Body temperature of human beings remains constant.]
7. (i)
8. (ii)
9. (ii)
10. (i)
11. (iii)
12. (iv)
13. (i)
14. (i)
15. (ii)
16. (ii)
17. (i)
18. (ii)
19. (ii)
20. (iii)
21. (ii)
22. (i)
23. (i)
24. (iv)
25. (ii)
26. (iii)

II. Multiple Choice Questions (Type-II)

27. (i), (ii)
28. (iii), (iv)
29. (i), (ii)
30. (i), (iii)
31. (ii), (iii)
32. (ii), (iii)
33. (ii), (iii)
34. (i), (iv)
35. (i), (ii)

III. Short Answer Type

36. Since both the components are appearing in the distillate and composition of liquid and vapour is same, this shows that liquids have formed azeotropic mixture and hence cannot be separated at this stage by distillation.

37. NaCl is a non volatile solute, therefore, addition of NaCl to water lowers the vapour pressure of water. As a result boiling point of water increases. Methyl alcohol on the other hand is more volatile than water, therefore its addition increases, the total vapour pressure over the solution and a decrease in boiling point of water results.

38. A substance (solvent) dissolves in a solvent if intermolecular interactions are similar in both the components; for example, polar solutes dissolve in polar solvents and non polar solutes in non polar solvents thus we can say “like dissolves like”.

39. Molarity of a solution is defined as the number of moles of solute dissolved in one litre of solution. Since volume depends on temperature and undergoes a change with change in temperature, the molarity will also change with change in temperature. On the other hand, mass does not change with change in temperature, as a result other concentration terms given in the question remain unchanged by changing temperature. According to the definition of all these terms, mass of the solvent used for making the solution is related to the mass of solute.

40. Higher the value of Henry’s law constant K_H, the lower is the solubility of the gas in the liquid.

41. At a given pressure the solubility of oxygen in water increases with decrease in temperature. Presence of more oxygen at lower temperature makes the aquatic species more comfortable in cold water.
42. Refer to the NCERT textbook for Class XII.

43. In pure liquid water the entire surface of liquid is occupied by the molecules of water. When a non volatile solute, for example glucose is dissolved in water, the fraction of surface covered by the solvent molecules gets reduced because some positions are occupied by glucose molecules. As a result number of solvent molecules escaping from the surface also gets reduced, consequently the vapour pressure of aqueous solution of glucose is reduced.

44. When salt is spread over snow covered roads, snow starts melting from the surface because of the depression in freezing point of water and it helps in clearing the roads.

45. Continuous sheets or films (natural or synthetic) which contain a network of submicroscopic holes or pores through which small solvent molecules like water can pass; but the passage of bigger molecules of solute is hindered, are known as semi permeable membrane.

46. Cellulose acetate.

IV. Matching Type

47. (i) → (d) (ii) → (c) (iii) → (a) (iv) → (b) (v) → (f) (vi) → (e)

48. (i) → (e) (ii) → (c) (iii) → (d) (iv) → (b) (v) → (a)

49. (i) → (c) (ii) → (e) (iii) → (d) (iv) → (a) (v) → (b)

50. (i) → (d) (ii) → (c) (iii) → (b) (iv) → (e) (v) → (a)

V. Assertion and Reason Type

51. (i) 52. (iv) 53. (i) 54. (ii)

VI. Long Answer Type

55. Refer to NCERT textbook for Class XII.

56. **Hint**: Discuss the following formulas

(i) For a binary solution having both components as volatile liquids, the total pressure will be

\[p = p_1 = x_1 p_1^0 + x_2 p_2^0 \]

\[= x_1 p_1^0 + (1-x_1) p_2^0 \]

\[= (p_1^0 - p_2^0) x_1 + p_2^0 \]

\[p = \text{total vapour pressure} \]

\[p_1 = \text{partial vapour pressure of component 1} \]

\[p_2 = \text{partial vapour pressure of component 2}. \]

(ii) For a solution containing non-volatile solute, the Raoult’s law is applicable only to vaporisable component (1) and total vapour pressure is written as

\[p = p_1 = x_1 p_1^0 \]
57. Refer to page 45 of NCERT textbook for Class XII.

58. See page 46 of NCERT textbook for Class XII.

59. **[Hint]**: Explain it with the help of a diagram (Fig. 2.3) illustrating the osmosis of water into raisin.

60. **[Hint]**: The process of osmosis is of immense biological and industrial importance as is evident from the following examples:

(i) Movement of water from soil into plant roots and subsequently into upper portion of the plant is partly due to osmosis.

(ii) Preservation of meat against bacterial action by adding salt.

(iii) Preservation of fruits against bacterial action by adding sugar. Bacterium in canned fruit loses water through the process of osmosis, shrivels and dies.

(iv) Reverse osmosis is used for desalination of water.

61. **[Hint]**:

62. Certain compounds when dissolved in suitable solvents either dissociate or associate.

For example ethanoic acid dimerises in benzene due to hydrogen bonding, while in water, it dissociates and forms ions. As a result the number of chemical species in solution increases or decreases as compared to the number of chemical species of solute added to form the solution. Since the magnitude of colligative property depends on the number of solute particles, it is expected that the molar mass determined on the basis of...
colligative properties will be either higher or lower than the expected value or the normal value and is called abnormal molar mass.

In order to account for the extent of dissociation or association of molecules in solution, Van’t Hoff introduced a factor, i, known as the Van’t Hoff factor. It can be defined as follows.

\[
i = \frac{\text{Expected molar mass}}{\text{Abnormal molar mass}} = \frac{\text{Observed colligative property}}{\text{Calculated colligative property}} = \frac{\text{Total number of moles of particles after association/dissociation}}{\text{Number of moles of particles before association/dissociation}}
\]
I. Multiple Choice Questions (Type-I)

1. Which cell will measure standard electrode potential of copper electrode?
 (i) Pt (s) | H₂ (g, 0.1 bar) | H⁺ (aq., 1 M) || Cu²⁺ (aq., 1 M) | Cu
 (ii) Pt(s) | H₂ (g, 1 bar) | H⁺ (aq., 1 M) || Cu²⁺ (aq., 2 M) | Cu
 (iii) Pt(s) | H₂ (g, 1 bar) | H⁺ (aq., 1 M) || Cu²⁺ (aq., 1 M) | Cu
 (iv) Pt(s) | H₂ (g, 1 bar) | H⁺ (aq., 0.1 M) || Cu²⁺ (aq., 1 M) | Cu

2. Electrode potential for Mg electrode varies according to the equation

\[E_{\text{Mg}^{2+}/\text{Mg}} = E_{\text{Mg}^{2+}/\text{Mg}}^\circ - \frac{0.059}{2} \log \frac{1}{[\text{Mg}^{2+}]} \].

The graph of \(E_{\text{Mg}^{2+}/\text{Mg}} \) vs \(\log [\text{Mg}^{2+}] \) is

(i) \[E_{\text{Mg}^{2+}/\text{Mg}} \rightarrow \log[\text{Mg}^{2+}] \]
(ii) \[E_{\text{Mg}^{2+}/\text{Mg}} \rightarrow \log[\text{Mg}^{2+}] \]
(iii) \[E_{\text{Mg}^{2+}/\text{Mg}} \rightarrow \log[\text{Mg}^{2+}] \]
(iv) \[E_{\text{Mg}^{2+}/\text{Mg}} \rightarrow \log[\text{Mg}^{2+}] \]
3. Which of the following statement is correct?
 (i) E_{cell} and $\Delta_r G$ of cell reaction both are extensive properties.
 (ii) E_{cell} and $\Delta_r G$ of cell reaction both are intensive properties.
 (iii) E_{cell} is an intensive property while $\Delta_r G$ of cell reaction is an extensive property.
 (iv) E_{cell} is an extensive property while $\Delta_r G$ of cell reaction is an intensive property.

4. The difference between the electrode potentials of two electrodes when no current is drawn through the cell is called __________.
 (i) Cell potential
 (ii) Cell emf
 (iii) Potential difference
 (iv) Cell voltage

5. Which of the following statement is not correct about an inert electrode in a cell?
 (i) It does not participate in the cell reaction.
 (ii) It provides surface either for oxidation or for reduction reaction.
 (iii) It provides surface for conduction of electrons.
 (iv) It provides surface for redox reaction.

6. An electrochemical cell can behave like an electrolytic cell when __________.
 (i) $E_{\text{cell}} = 0$
 (ii) $E_{\text{cell}} > E_{\text{ext}}$
 (iii) $E_{\text{ext}} > E_{\text{cell}}$
 (iv) $E_{\text{cell}} = E_{\text{ext}}$

7. Which of the statements about solutions of electrolytes is not correct?
 (i) Conductivity of solution depends upon size of ions.
 (ii) Conductivity depends upon viscosity of solution.
 (iii) Conductivity does not depend upon solvation of ions present in solution.
 (iv) Conductivity of solution increases with temperature.

8. Using the data given below find out the strongest reducing agent.

 $E^\circ_{\text{Cl}_2\text{O}_7^2-/Cr^{3+}} = 1.33V\quad E^\circ_{\text{Cl}_2/\text{Cl}^-} = 1.36V$

 $E^\circ_{\text{MnO}_4^-/\text{Mn}^{2+}} = 1.51V\quad E^\circ_{\text{Cr}^{3+}/\text{Cr}} = -0.74V$

 (i) Cl$^-$
 (ii) Cr
 (iii) Cr$^{3+}$
 (iv) Mn$^{2+}$
9. Use the data given in Q.8 and find out which of the following is the strongest oxidising agent.
 (i) Cl\(^-\)
 (ii) Mn\(^{2+}\)
 (iii) MnO\(_4^-\)
 (iv) Cr\(^{3+}\)

10. Using the data given in Q.8 find out in which option the order of reducing power is correct.
 (i) Cr\(^{3+}\) < Cl\(^-\) < Mn\(^{2+}\) < Cr
 (ii) Mn\(^{2+}\) < Cl\(^-\) < Cr\(^{3+}\) < Cr
 (iii) Cr\(^{3+}\) < Cl\(^-\) < Cr\(_2\)O\(_7^2-\) < MnO\(_4^-\)
 (iv) Mn\(^{2+}\) < Cr\(^{3+}\) < Cl\(^-\) < Cr

11. Use the data given in Q.8 and find out the most stable ion in its reduced form.
 (i) Cl\(^-\)
 (ii) Cr\(^{3+}\)
 (iii) Cr
 (iv) Mn\(^{2+}\)

12. Use the data of Q.8 and find out the most stable oxidised species.
 (i) Cr\(^{3+}\)
 (ii) MnO\(_4^-\)
 (iii) Cr\(_2\)O\(_7^2-\)
 (iv) Mn\(^{2+}\)

13. The quantity of charge required to obtain one mole of aluminium from Al\(_2\)O\(_3\) is
 ________.
 (i) 1F
 (ii) 6F
 (iii) 3F
 (iv) 2F

14. The cell constant of a conductivity cell ________.
 (i) changes with change of electrolyte.
 (ii) changes with change of concentration of electrolyte.
 (iii) changes with temperature of electrolyte.
 (iv) remains constant for a cell.

15. While charging the lead storage battery ________.
 (i) PbSO\(_4\) anode is reduced to Pb.
 (ii) PbSO\(_4\) cathode is reduced to Pb.
(iii) PbSO\textsubscript{4} cathode is oxidised to Pb.
(iv) PbSO\textsubscript{4} anode is oxidised to PbO\textsubscript{2}.

16. $\Lambda^0_{(\text{NH}_4\text{OH})}$ is equal to ____________.

(i) $\Lambda^0_{(\text{NH}_4\text{Cl})} + \Lambda^0_{(\text{HCl})} - \Lambda^0_{(\text{HCl})}$
(ii) $\Lambda^0_{(\text{NaOH})} + \Lambda^0_{(\text{NaCl})} - \Lambda^0_{(\text{NaCl})}$
(iii) $\Lambda^0_{(\text{NaCl})} + \Lambda^0_{(\text{NaOH})} - \Lambda^0_{(\text{NaOH})}$
(iv) $\Lambda^0_{(\text{NaOH})} + \Lambda^0_{(\text{NaCl})} - \Lambda^0_{(\text{NaCl})}$

17. In the electrolysis of aqueous sodium chloride solution which of the half cell reaction will occur at anode?

(i) $\text{Na}^+ (\text{aq}) + e^{-} \rightarrow \text{Na} (\text{s})$; $E^\circ_{\text{cell}} = -2.71\text{V}$
(ii) $2\text{H}_2\text{O} (\text{l}) \rightarrow \text{O}_2 (\text{g}) + 4\text{H}^+ (\text{aq}) + 4e^{-}$; $E^\circ_{\text{cell}} = 1.23\text{V}$
(iii) $\text{H}^+ (\text{aq}) + e^{-} \rightarrow \frac{1}{2} \text{H}_2 (\text{g})$; $E^\circ_{\text{cell}} = 0.00\text{V}$
(iv) $\text{Cl}^- (\text{aq}) \rightarrow \frac{1}{2} \text{Cl}_2 (\text{g}) + e^{-}$; $E^\circ_{\text{cell}} = 1.36\text{V}$

II. Multiple Choice Questions (Type-II)

Note: In the following questions two or more than two options may be correct.

18. The positive value of the standard electrode potential of Cu2+/Cu indicates that ____________.

(i) this redox couple is a stronger reducing agent than the H\textsuperscript{+/H\textsubscript{2}} couple.
(ii) this redox couple is a stronger oxidising agent than H\textsuperscript{+/H\textsubscript{2}}.
(iii) Cu can displace H\textsubscript{2} from acid.
(iv) Cu cannot displace H\textsubscript{2} from acid.

19. E°_{cell} for some half cell reactions are given below. On the basis of these mark the correct answer.

(a) $\text{H}^+ (\text{aq}) + e^{-} \rightarrow \frac{1}{2} \text{H}_2 (\text{g})$; $E^\circ_{\text{cell}} = 0.00\text{V}$
(b) \[2H_2O (l) \rightarrow O_2 (g) + 4H^+ (aq) + 4e^-; \quad E_{\text{cell}}^\circ = 1.23\text{V} \]

(c) \[2SO_4^{2-} (aq) \rightarrow S_2O_8^{2-} (aq) + 2e^-; \quad E_{\text{cell}}^\circ = 1.96\text{V} \]

(i) In dilute sulphuric acid solution, hydrogen will be reduced at cathode.
(ii) In concentrated sulphuric acid solution, water will be oxidised at anode.
(iii) In dilute sulphuric acid solution, water will be oxidised at anode.
(iv) In dilute sulphuric acid solution, SO_4^{2-} ion will be oxidised to tetrathionate ion at anode.

20. \[E_{\text{cell}} = 1.1\text{V} \] for Daniel cell. Which of the following expressions are correct description of state of equilibrium in this cell?

(i) \[1.1 = K_c \]

(ii) \[\frac{2.303RT}{2F} \log K_c = 1.1 \]

(iii) \[\log K_c = \frac{2.2}{0.059} \]

(iv) \[\log K_c = 1.1 \]

21. Conductivity of an electrolytic solution depends on ____________.

(i) nature of electrolyte.
(ii) concentration of electrolyte.
(iii) power of AC source.
(iv) distance between the electrodes.

22. \[\Lambda_0 \text{H}_2\text{O} \text{ is equal to } \]

(i) \[\Lambda_0 \text{[HCl]} + \Lambda_0 \text{[NaOH]} - \Lambda_0 \text{[NaCl]} \]

(ii) \[\Lambda_0 \text{[HNO}_3\text{]} + \Lambda_0 \text{[NaNO}_3\text{]} - \Lambda_0 \text{[NaOH]} \]

(iii) \[\Lambda_0 \text{[HNO}_3\text{]} + \Lambda_0 \text{[NaOH]} - \Lambda_0 \text{[NaNO}_3\text{]} \]

(iv) \[\Lambda_0 \text{[NH}_3\text{OH]} + \Lambda_0 \text{[HCl]} - \Lambda_0 \text{[NH}_3\text{Cl]} \]

23. What will happen during the electrolysis of aqueous solution of CuSO_4 by using platinum electrodes?

(i) Copper will deposit at cathode.
(ii) Copper will deposit at anode.
(iii) Oxygen will be released at anode.
(iv) Copper will dissolve at anode.

24. What will happen during the electrolysis of aqueous solution of CuSO$_4$ in the presence of Cu electrodes?
 (i) Copper will deposit at cathode.
 (ii) Copper will dissolve at anode.
 (iii) Oxygen will be released at anode.
 (iv) Copper will deposit at anode.

25. Conductivity κ, is equal to __________.
 (i) $\frac{1}{l \cdot R \cdot A}$
 (ii) $\frac{G^*}{R}$
 (iii) Λ_m
 (iv) $\frac{l}{A}$

26. Molar conductivity of ionic solution depends on __________.
 (i) temperature.
 (ii) distance between electrodes.
 (iii) concentration of electrolytes in solution.
 (iv) surface area of electrodes.

27. For the given cell, Mg | Mg$^{2+}$ || Cu$^{2+}$ | Cu
 (i) Mg is cathode
 (ii) Cu is cathode
 (iii) The cell reaction is Mg + Cu$^{2+} \rightarrow$ Mg$^{2+}$ + Cu
 (iv) Cu is the oxidising agent

III. Short Answer Type

28. Can absolute electrode potential of an electrode be measured?

29. Can E°_{Cell} or ΔG° for cell reaction ever be equal to zero?

30. Under what condition is $E_{\text{Cell}} = 0$ or $\Delta G = 0$?

Exemplar Problems, Chemistry
31. What does the negative sign in the expression \(\Delta E_{Zn^{2+}/Zn}^\circ = -0.76 \text{ V} \) mean?

32. Aqueous copper sulphate solution and aqueous silver nitrate solution are electrolysed by 1 ampere current for 10 minutes in separate electrolytic cells. Will the mass of copper and silver deposited on the cathode be same or different? Explain your answer.

33. Depict the galvanic cell in which the cell reaction is \(\text{Cu} + 2\text{Ag}^+ \rightarrow 2\text{Ag} + \text{Cu}^{2+} \)

34. Value of standard electrode potential for the oxidation of \(\text{Cl}^- \) ions is more positive than that of water, even then in the electrolysis of aqueous sodium chloride, why is \(\text{Cl}^- \) oxidised at anode instead of water?

35. What is electrode potential?

36. Consider the following diagram in which an electrochemical cell is coupled to an electrolytic cell. What will be the polarity of electrodes ‘A’ and ‘B’ in the electrolytic cell?

![Diagram of an electrochemical cell coupled to an electrolytic cell](image)

Fig. 3.1

37. Why is alternating current used for measuring resistance of an electrolytic solution?

38. A galvanic cell has electrical potential of 1.1V. If an opposing potential of 1.1V is applied to this cell, what will happen to the cell reaction and current flowing through the cell?

39. How will the pH of brine (aq. NaCl solution) be affected when it is electrolysed?

40. Unlike dry cell, the mercury cell has a constant cell potential throughout its useful life. Why?

41. Solutions of two electrolytes ‘A’ and ‘B’ are diluted. The \(\Lambda_m \) of ‘B’ increases 1.5 times while that of A increases 25 times. Which of the two is a strong electrolyte? Justify your answer.
42. When acidulated water (dil. H₂SO₄ solution) is electrolysed, will the pH of the solution be affected? Justify your answer.

43. In an aqueous solution how does specific conductivity of electrolytes change with addition of water?

44. Which reference electrode is used to measure the electrode potential of other electrodes?

45. Consider a cell given below
 Cu | Cu²⁺ || Cl⁻ | Cl₂, Pt
Write the reactions that occur at anode and cathode.

46. Write the Nernst equation for the cell reaction in the Daniel cell. How will the E⁺, Cell be affected when concentration of Zn²⁺ ions is increased?

47. What advantage do the fuel cells have over primary and secondary batteries?

48. Write the cell reaction of a lead storage battery when it is discharged. How does the density of the electrolyte change when the battery is discharged?

49. Why on dilution the Λₗ of CH₃COOH increases drastically, while that of CH₃COONa increases gradually?

IV. Matching Type

Note: Match the items of Column I and Column II in the following questions.

50. Match the terms given in Column I with the units given in Column II.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) Λₘ</td>
<td>(a) S cm⁻¹</td>
</tr>
<tr>
<td>(ii) E⁺, Cell</td>
<td>(b) m⁻¹</td>
</tr>
<tr>
<td>(iii) κ</td>
<td>(c) S cm² mol⁻¹</td>
</tr>
<tr>
<td>(iv) G*</td>
<td>(d) V</td>
</tr>
</tbody>
</table>

51. Match the terms given in Column I with the items given in Column II.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) Λₘ</td>
<td>(a) intensive property</td>
</tr>
<tr>
<td>(ii) E⁺, Cell</td>
<td>(b) depends on number of ions/volume</td>
</tr>
<tr>
<td>(iii) κ</td>
<td>(c) extensive property</td>
</tr>
<tr>
<td>(iv) ΔrG⁺, Cell</td>
<td>(d) increases with dilution</td>
</tr>
</tbody>
</table>

52. Match the items of Column I and Column II.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) Lead storage battery</td>
<td>(a) maximum efficiency</td>
</tr>
</tbody>
</table>
(ii) Mercury cell (b) prevented by galvanisation
(iii) Fuel cell (c) gives steady potential
(iv) Rusting (d) Pb is anode, PbO₂ is cathode

53. Match the items of Column I and Column II.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) (\kappa)</td>
<td>(a) (I \times t)</td>
</tr>
<tr>
<td>(ii) (\Lambda_m)</td>
<td>(b) (\Lambda_m / \Lambda_m^0)</td>
</tr>
<tr>
<td>(iii) (\alpha)</td>
<td>(c) (\kappa)</td>
</tr>
<tr>
<td>(iv) (Q)</td>
<td>(d) (G^*)</td>
</tr>
</tbody>
</table>

54. Match the items of Column I and Column II.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) Lechlanche cell</td>
<td>(a) cell reaction (2H_2 + O_2 \rightarrow 2H_2O)</td>
</tr>
<tr>
<td>(ii) Ni–Cd cell</td>
<td>(b) does not involve any ion in solution and is used in hearing aids.</td>
</tr>
<tr>
<td>(iii) Fuel cell</td>
<td>(c) rechargeable</td>
</tr>
<tr>
<td>(iv) Mercury cell</td>
<td>(d) reaction at anode, (Zn \rightarrow Zn^{2+} + 2e^-)</td>
</tr>
<tr>
<td></td>
<td>(e) converts energy of combustion into electrical energy</td>
</tr>
</tbody>
</table>

55. Match the items of Column I and Column II on the basis of data given below:

\[E_{F_2/F^-}^{\circ} = 2.87V, E_{Li^+/Li}^{\circ} = -3.5V, E_{Au^{3+}/Au}^{\circ} = 1.4V, E_{Br^-/Br^-}^{\circ} = 1.09V \]

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) (F_2)</td>
<td>(a) metal is the strongest reducing agent</td>
</tr>
<tr>
<td>(ii) (Li)</td>
<td>(b) metal ion which is the weakest oxidising agent</td>
</tr>
<tr>
<td>(iii) (Au^{3+})</td>
<td>(c) non metal which is the best oxidising agent</td>
</tr>
<tr>
<td>(iv) (Br^-)</td>
<td>(d) unreactive metal</td>
</tr>
<tr>
<td>(v) (Au)</td>
<td>(e) anion that can be oxidised by (Au^{3+})</td>
</tr>
<tr>
<td>(vi) (Li^+)</td>
<td>(f) anion which is the weakest reducing agent</td>
</tr>
<tr>
<td>(vii) (F^-)</td>
<td>(g) metal ion which is an oxidising agent</td>
</tr>
</tbody>
</table>
V. Assertion and Reason Type

Note: In the following questions a statement of assertion followed by a statement of reason is given. Choose the correct answer out of the following choices.

(i) Both assertion and reason are true and the reason is the correct explanation of assertion.
(ii) Both assertion and reason are true and the reason is not the correct explanation of assertion.
(iii) Assertion is true but the reason is false.
(iv) Both assertion and reason are false.
(v) Assertion is false but reason is true.

56. **Assertion**: Cu is less reactive than hydrogen.
 Reason: \(E^\circ_{\text{Cu}^{2+}/\text{Cu}} \) is negative.

57. **Assertion**: \(E_{\text{cell}} \) should have a positive value for the cell to function.
 Reason: \(E_{\text{cathode}} < E_{\text{anode}} \)

58. **Assertion**: Conductivity of all electrolytes decreases on dilution.
 Reason: On dilution number of ions per unit volume decreases.

59. **Assertion**: \(\Lambda_m \) for weak electrolytes shows a sharp increase when the electrolytic solution is diluted.
 Reason: For weak electrolytes degree of dissociation increases with dilution of solution.

60. **Assertion**: Mercury cell does not give steady potential.
 Reason: In the cell reaction, ions are not involved in solution.

61. **Assertion**: Electrolysis of NaCl solution gives chlorine at anode instead of \(\text{O}_2 \).
 Reason: Formation of oxygen at anode requires overvoltage.

62. **Assertion**: For measuring resistance of an ionic solution an AC source is used.
 Reason: Concentration of ionic solution will change if DC source is used.

63. **Assertion**: Current stops flowing when \(E_{\text{cell}} = 0 \).
 Reason: Equilibrium of the cell reaction is attained.

64. **Assertion**: \(E_{\text{Ag}^+/\text{Ag}} \) increases with increase in concentration of \(\text{Ag}^+ \) ions.
 Reason: \(E_{\text{Ag}^+/\text{Ag}} \) has a positive value.

65. **Assertion**: Copper sulphate can be stored in zinc vessel.
 Reason: Zinc is less reactive than copper.
VI. Long Answer Type

66. Consider the Fig. 3.2 and answer the following questions.

(i) Cell ‘A’ has \(E_{\text{cell}} = 2 \text{V} \) and Cell ‘B’ has \(E_{\text{cell}} = 1.1 \text{V} \) which of the two cells ‘A’ or ‘B’ will act as an electrolytic cell. Which electrode reactions will occur in this cell?

(ii) If cell ‘A’ has \(E_{\text{cell}} = 0.5 \text{V} \) and cell ‘B’ has \(E_{\text{cell}} = 1.1 \text{V} \) then what will be the reactions at anode and cathode?

67. Consider Fig. 3.2 and answer the questions (i) to (vi) given below.

(i) Redraw the diagram to show the direction of electron flow.

(ii) Is silver plate the anode or cathode?

(iii) What will happen if salt bridge is removed?

(iv) When will the cell stop functioning?

(v) How will concentration of \(\text{Zn}^{2+} \) ions and \(\text{Ag}^{+} \) ions be affected when the cell functions?

(vi) How will the concentration of \(\text{Zn}^{2+} \) ions and \(\text{Ag}^{+} \) ions be affected after the cell becomes ‘dead’?

68. What is the relationship between Gibbs free energy of the cell reaction in a galvanic cell and the emf of the cell? When will the maximum work be obtained from a galvanic cell?
I. Multiple Choice Questions (Type-I)

1. (iii) 2. (ii) 3. (iii) 4. (ii) 5. (iv) 6. (iii)
7. (iii) 8. (ii) 9. (iii) 10. (ii) 11. (iv) 12. (i)
13. (iii) 14. (iv) 15. (i) 16. (ii) 17. (ii)

II. Multiple Choice Questions (Type-II)

18. (ii), (iv) 19. (i), (iii) 20. (ii), (iii) 21. (i), (ii)
22. (i), (iv) 23. (i), (iii) 24. (i), (ii) 25. (i), (ii)
26. (i), (iii) 27. (ii), (iii)

III. Short Answer Type

28. No
29. No
30. When the cell reaction reaches equilibrium.
31. It means that Zn is more reactive than hydrogen. When zinc electrode will be connected to SHE, Zn will get oxidised and H⁺ will get reduced.
32. Different, see the NCERT textbook, page no. 84.
33. Cu || Cu²⁺ || Ag⁺ || Ag
34. Under the conditions of electrolysis of aqueous sodium chloride, oxidation of water at anode requires overpotential hence Cl⁻ is oxidised instead of water.
35. See NCERT textbook, page no. 65
36. ‘A’ will have negative polarity
 ‘B’ will have positive polarity
37. Alternating current is used to prevent electrolysis so that concentration of ions in the solution remains constant.
38. See NCERT textbook, page no. 64
39. The pH of the solution will rise as NaOH is formed in the electrolytic cell.
40. Ions are not involved in the overall cell reaction of mercury cells.
41. Electrolyte 'B' is strong as on dilution the number of ions remains the same, only interionic attraction decreases therefore increase in λ_m is small.

42. pH of the solution will not be affected as $[H^+]$ remains constant.

At anode: $2H_2O \rightarrow O_2 + 4H^+ + 4e^-$
At cathode: $4H^+ + 4e^- \rightarrow 2H_2$

43. Conductivity decreases because number of ions per unit volume decreases.

44. Standard hydrogen electrode is the reference electrode whose electrode potential is taken to be zero. The electrode potential of other electrodes is measured with respect to it.

45. Anode: $Cu \rightarrow Cu^{2+} + 2e^-$
Cathode: $Cl_2 + 2e^- \rightarrow 2Cl^-$
Cu is anode as it is getting oxidised.
Cl$_2$ is cathode as it is getting reduced.

46. $Zn + Cu^{2+} \rightarrow Zn^{2+} + Cu$

$$E_{cell} = E_{cell}^{\ominus} - \frac{0.059}{2} \log \frac{[Zn^{2+}]}{[Cu^{2+}]}$$

E_{cell} decreases when concentration of Zn$^{2+}$ ions, $[Zn^{2+}]$ increases.

47. Primary batteries contain a limited amount of reactants and are discharged when the reactants have been consumed. Secondary batteries can be recharged but take a long time to recharge. Fuel cell runs continuously as long as the reactants are supplied to it and products are removed continuously.

48. $Pb + PbO_2 + 2H_2SO_4 \rightarrow 2PbSO_4 + 2H_2O$
Density of electrolyte decreases as water is formed and sulphuric acid is consumed as the product during discharge of the battery.

49. In the case of CH$_3$COOH, which is a weak electrolyte, the number of ions increase on dilution due to an increase in degree of dissociation.

$CH_3COOH + H_2O \rightleftharpoons CH_3COO^- + H_3O^+$

In the case of strong electrolyte the number of ions remains the same but the interionic attraction decreases.

IV. Matching Type

50. (i) \rightarrow (c) (ii) \rightarrow (d) (iii) \rightarrow (a) (iv) \rightarrow (b)

51. (i) \rightarrow (d) (ii) \rightarrow (a) (iii) \rightarrow (b) (iv) \rightarrow (c)

52. (i) \rightarrow (d) (ii) \rightarrow (c) (iii) \rightarrow (a) (iv) \rightarrow (b)
53. (i) → (d) (ii) → (c) (iii) → (b) (iv) → (a)
54. (i) → (d) (ii) → (c) (iii) → (a), (e) (iv) → (b)
55. (i) → (c) (ii) → (a) (iii) → (g) (iv) → (e)
 (v) → (d) (vi) → (b) (vii) → (g) (f)

V. Assertion and Reason Type

56. (iii) 57. (iii) 58. (i) 59. (i) 60. (v)
61. (i) 62. (i) 63. (i) 64. (ii) 65. (iv)

VI. Long Answer Type

66. (i) Cell 'B' will act as electrolytic cell as it has lower emf
 .: The electrode reactions will be:
 Zn$^{2+}$ + 2e$^{-}$ → Zn at cathode
 Cu → Cu$^{2+}$ + 2e$^{-}$ at anode
 (ii) Now cell 'B' acts as galvanic cell as it has higher emf and will push
 electrons into cell 'A'.
 The electrode reaction will be:
 At anode : Zn → Zn$^{2+}$ + 2e$^{-}$
 At cathode : Cu$^{2+}$ + 2e$^{-}$ → Cu

67. **Hint**:
 (i) Electrons move from Zn to Ag.
 (ii) Ag is the cathode.
 (iii) Cell will stop functioning.
 (iv) When $E_{cell} = 0$.
 (v) Concentration of Zn$^{2+}$ ions will increase and concentration of
 Ag$^{+}$ ions will decrease
 (vi) When $E_{cell} = 0$ equilibrium is reached and concentration of
 Zn$^{2+}$ ions and Ag$^{+}$ ions will not change.
I. Multiple Choice Questions (Type-I)

1. The role of a catalyst is to change ______________.
 (i) gibbs energy of reaction.
 (ii) enthalpy of reaction.
 (iii) activation energy of reaction.
 (iv) equilibrium constant.

2. In the presence of a catalyst, the heat evolved or absorbed during the reaction ____________.
 (i) increases.
 (ii) decreases.
 (iii) remains unchanged.
 (iv) may increase or decrease.

3. Activation energy of a chemical reaction can be determined by ______________.
 (i) determining the rate constant at standard temperature.
 (ii) determining the rate constants at two temperatures.
 (iii) determining probability of collision.
 (iv) using catalyst.

4. Consider Fig. 4.1 and mark the correct option.
 (i) Activation energy of forward reaction is $E_1 + E_2$ and product is less stable than reactant.
 (ii) Activation energy of forward reaction is $E_1 + E_2$ and product is more stable than reactant.

![Fig. 4.1](image-url)
(iii) Activation energy of both forward and backward reaction is $E_1 + E_2$ and reactant is more stable than product.

(iv) Activation energy of backward reaction is E_1, and product is more stable than reactant.

5. Consider a first order gas phase decomposition reaction given below:

\[A(g) \rightarrow B(g) + C(g) \]

The initial pressure of the system before decomposition of A was p_i. After lapse of time ‘t’, total pressure of the system increased by x units and became p_t. The rate constant k for the reaction is given as ________.

(i) \[k = \frac{2.303}{t} \log \frac{p_i}{p_i - x} \]

(ii) \[k = \frac{2.303}{t} \log \frac{p_i}{2p_i - p_t} \]

(iii) \[k = \frac{2.303}{t} \log \frac{p_i}{2p_t + p_i} \]

(iv) \[k = \frac{2.303}{t} \log \frac{p_i}{p_i + x} \]

6. According to Arrhenius equation rate constant k is equal to $A e^{-E_a/RT}$. Which of the following options represents the graph of $\ln k$ vs $\frac{1}{T}$?

(i) \[\uparrow \ln k \quad 1/T \rightarrow \]

(ii) \[\uparrow \ln k \quad 1/T \rightarrow \]

(iii) \[\uparrow \ln k \quad 1/T \rightarrow \]

(iv) \[\uparrow \ln k \quad 1/T \rightarrow \]
7. Consider the Arrhenius equation given below and mark the correct option.

\[k = A e^{-\frac{E_a}{RT}} \]

(i) Rate constant increases exponentially with increasing activation energy and decreasing temperature.
(ii) Rate constant decreases exponentially with increasing activation energy and decreasing temperature.
(iii) Rate constant increases exponentially with decreasing activation energy and decreasing temperature.
(iv) Rate constant increases exponentially with decreasing activation energy and increasing temperature.

8. A graph of volume of hydrogen released vs time for the reaction between zinc and dil. HCl is given in Fig. 4.2. On the basis of this mark the correct option.

(i) Average rate upto 40s is \(\frac{V_3 - V_2}{40} \)
(ii) Average rate upto 40 seconds is \(\frac{V_3 - V_2}{40 - 30} \)
(iii) Average rate upto 40 seconds is \(\frac{V_3}{40} \)
(iv) Average rate upto 40 seconds is \(\frac{V_3 - V_1}{40 - 20} \)

9. Which of the following statements is not correct about order of a reaction.

(i) The order of a reaction can be a fractional number.
(ii) Order of a reaction is experimentally determined quantity.
(iii) The order of a reaction is always equal to the sum of the stoichiometric coefficients of reactants in the balanced chemical equation for a reaction.
(iv) The order of a reaction is the sum of the powers of molar concentration of the reactants in the rate law expression.

10. Consider the graph given in Fig. 4.2. Which of the following options does not show instantaneous rate of reaction at 40th second?

(i) \(\frac{V_3 - V_2}{50 - 30} \)
(ii) \(\frac{V_4 - V_2}{50 - 30} \)
(iii) \(\frac{V_3 - V_2}{40 - 30} \)
(iv) \(\frac{V_3 - V_1}{40 - 20} \)
11. Which of the following statements is correct?
 (i) The rate of a reaction decreases with passage of time as the concentration of reactants decreases.
 (ii) The rate of a reaction is same at any time during the reaction.
 (iii) The rate of a reaction is independent of temperature change.
 (iv) The rate of a reaction decreases with increase in concentration of reactant(s).

12. Which of the following expressions is correct for the rate of reaction given below?
 \[5\text{Br}^- (aq) + \text{BrO}_3^- (aq) + 6\text{H}^+ (aq) \rightarrow 3\text{Br}_2 (aq) + 3\text{H}_2\text{O}(l) \]
 (i) \[\frac{\Delta [\text{Br}^-]}{\Delta t} = 5 \frac{\Delta [\text{H}^+]}{\Delta t} \]
 (ii) \[\frac{\Delta [\text{Br}^-]}{\Delta t} = \frac{6}{5} \frac{\Delta [\text{H}^+]}{\Delta t} \]
 (iii) \[\frac{\Delta [\text{Br}^-]}{\Delta t} = \frac{5}{6} \frac{\Delta [\text{H}^+]}{\Delta t} \]
 (iv) \[\frac{\Delta [\text{Br}^-]}{\Delta t} = 6 \frac{\Delta [\text{H}^+]}{\Delta t} \]

13. Which of the following graphs represents exothermic reaction?
 (a) (a) only
 (b) (b) only
 (c) (c) only
 (d) (a) and (b)
14. Rate law for the reaction \(A + 2B \rightarrow C \) is found to be
 \[\text{Rate} = k [A][B] \]
 Concentration of reactant ‘B’ is doubled, keeping the concentration of ‘A’ constant, the value of rate constant will be______.
 (i) the same
 (ii) doubled
 (iii) quadrupled
 (iv) halved

15. Which of the following statements is **incorrect** about the collision theory of chemical reaction?
 (i) It considers reacting molecules or atoms to be hard spheres and ignores their structural features.
 (ii) Number of effective collisions determines the rate of reaction.
 (iii) Collision of atoms or molecules possessing sufficient threshold energy results into the product formation.
 (iv) Molecules should collide with sufficient threshold energy and proper orientation for the collision to be effective.

16. A first order reaction is 50% completed in \(1.26 \times 10^{14} \) s. How much time would it take for 100% completion?
 (i) \(1.26 \times 10^{15} \) s
 (ii) \(2.52 \times 10^{14} \) s
 (iii) \(2.52 \times 10^{28} \) s
 (iv) infinite

17. Compounds ‘A’ and ‘B’ react according to the following chemical equation.
 \[A (g) + 2 B (g) \rightarrow 2C (g) \]
 Concentration of either ‘A’ or ‘B’ were changed keeping the concentrations of one of the reactants constant and rates were measured as a function of initial concentration. Following results were obtained. Choose the correct option for the rate equations for this reaction.

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Initial concentration of [A]/mol L(^{-1})</th>
<th>Initial concentration of [B]/mol L(^{-1})</th>
<th>Initial rate of formation of [C]/mol L(^{-1}) s(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>0.30</td>
<td>0.30</td>
<td>0.10</td>
</tr>
<tr>
<td>2.</td>
<td>0.30</td>
<td>0.60</td>
<td>0.40</td>
</tr>
<tr>
<td>3.</td>
<td>0.60</td>
<td>0.30</td>
<td>0.20</td>
</tr>
</tbody>
</table>

 (i) Rate = \(k [A]^2 [B] \)
 (ii) Rate = \(k [A] [B]^2 \)
 (iii) Rate = \(k [A] [B] \)
 (iv) Rate = \(k [A]^p [B]^q \)
18. Which of the following statement is not correct for the catalyst?
 (i) It catalyses the forward and backward reaction to the same extent.
 (ii) It alters ΔG of the reaction.
 (iii) It is a substance that does not change the equilibrium constant of a reaction.
 (iv) It provides an alternate mechanism by reducing activation energy between reactants and products.

19. The value of rate constant of a pseudo first order reaction ____________.
 (i) depends on the concentration of reactants present in small amount.
 (ii) depends on the concentration of reactants present in excess.
 (iii) is independent of the concentration of reactants.
 (iv) depends only on temperature.

20. Consider the reaction $A \rightleftharpoons B$. The concentration of both the reactants and the products varies exponentially with time. Which of the following figures correctly describes the change in concentration of reactants and products with time?

 ![Graphs](image)

II. Multiple Choice Questions (Type-II)

Note: In the following questions two or more options may be correct.

21. Rate law cannot be determined from balanced chemical equation if _______.
 (i) reverse reaction is involved.
(ii) it is an elementary reaction.
(iii) it is a sequence of elementary reactions.
(iv) any of the reactants is in excess.

22. Which of the following statements are applicable to a balanced chemical equation of an elementary reaction?
 (i) Order is same as molecularity.
 (ii) Order is less than the molecularity.
 (iii) Order is greater than the molecularity.
 (iv) Molecularity can never be zero.

23. In any unimolecular reaction __________.
 (i) only one reacting species is involved in the rate determining step.
 (ii) the order and the molecularity of slowest step are equal to one.
 (iii) the molecularity of the reaction is one and order is zero.
 (iv) both molecularity and order of the reaction are one.

24. For a complex reaction __________.
 (i) order of overall reaction is same as molecularity of the slowest step.
 (ii) order of overall reaction is less than the molecularity of the slowest step.
 (iii) order of overall reaction is greater than molecularity of the slowest step.
 (iv) molecularity of the slowest step is never zero or non integer.

25. At high pressure the following reaction is zero order.

\[2\text{NH}_3(g) \xrightarrow{1130 \text{ K}} \text{Pt catalyst} \rightarrow \text{N}_2(g) + 3\text{H}_2(g) \]

Which of the following options are correct for this reaction?
 (i) Rate of reaction = Rate constant
 (ii) Rate of the reaction depends on concentration of ammonia.
 (iii) Rate of decomposition of ammonia will remain constant until ammonia disappears completely.
 (iv) Further increase in pressure will change the rate of reaction.

26. During decomposition of an activated complex
 (i) energy is always released
 (ii) energy is always absorbed
 (iii) energy does not change
 (iv) reactants may be formed

28. According to Maxwell Boltzmann distributon of energy. __________.
 (i) the fraction of molecules with most probable kinetic energy decreases at higher temperatures.
 (ii) the fraction of molecules with most probable kinetic energy increases at higher temperatures.
(iii) most probable kinetic energy increases at higher temperatures.
(iv) most probable kinetic energy decreases at higher temperatures.

28. In the graph showing Maxwell Boltzman distribution of energy, ___________.
(i) area under the curve must not change with increase in temperature.
(ii) area under the curve increases with increase in temperature.
(iii) area under the curve decreases with increase in temperature.
(iv) with increase in temperature curve broadens and shifts to the right hand side.

29. Which of the following statements are in accordance with the Arrhenius equation?
(i) Rate of a reaction increases with increase in temperature.
(ii) Rate of a reaction increases with decrease in activation energy.
(iii) Rate constant decreases exponentially with increase in temperature.
(iv) Rate of reaction decreases with decrease in activation energy.

30. Mark the incorrect statements.
(i) Catalyst provides an alternative pathway to reaction mechanism.
(ii) Catalyst raises the activation energy.
(iii) Catalyst lowers the activation energy.
(iv) Catalyst alters enthalpy change of the reaction.

31. Which of the following graphs is correct for a zero order reaction?
32. Which of the following graphs is correct for a first order reaction?

- (i) A constant concentration over time.
- (ii) A straight line with a negative slope on a semi-logarithmic plot.
- (iii) A decrease in concentration with time.
- (iv) A straight line with a negative slope on a log-log plot.

III. Short Answer Type

33. State a condition under which a bimolecular reaction is kinetically first order reaction.

34. Write the rate equation for the reaction $2A + B \rightarrow C$ if the order of the reaction is zero.

35. How can you determine the rate law of the following reaction?

$$2\text{NO} (g) + \text{O}_2 (g) \rightarrow 2\text{NO}_2 (g)$$

36. For which type of reactions, order and molecularity have the same value?

37. In a reaction if the concentration of reactant A is tripled, the rate of reaction becomes twenty seven times. What is the order of the reaction?

38. Derive an expression to calculate time required for completion of zero order reaction.

39. For a reaction $A + B \rightarrow \text{Products}$, the rate law is $\text{Rate} = k [A][B]^{3/2}$

Can the reaction be an elementary reaction? Explain.

40. For a certain reaction large fraction of molecules has energy more than the threshold energy, yet the rate of reaction is very slow. Why?
41. For a zero order reaction will the molecularity be equal to zero? Explain.

42. For a general reaction \(A \rightarrow B \), plot of concentration of \(A \) vs time is given in Fig. 4.3. Answer the following question on the basis of this graph.

 (i) What is the order of the reaction?
 (ii) What is the slope of the curve?
 (iii) What are the units of rate constant?

\[\text{Fig. 4.3} \]

43. The reaction between \(\text{H}_2(g) \) and \(\text{O}_2(g) \) is highly feasible yet allowing the gases to stand at room temperature in the same vessel does not lead to the formation of water. Explain.

44. Why does the rate of a reaction increase with rise in temperature?

45. Oxygen is available in plenty in air yet fuels do not burn by themselves at room temperature. Explain.

46. Why is the probability of reaction with molecularity higher than three very rare?

47. Why does the rate of any reaction generally decreases during the course of the reaction?

48. Thermodynamic feasibility of the reaction alone cannot decide the rate of the reaction. Explain with the help of one example.

49. Why in the redox titration of \(\text{KMnO}_4 \) vs oxalic acid, we heat oxalic acid solution before starting the titration?

50. Why can’t molecularity of any reaction be equal to zero?

51. Why molecularity is applicable only for elementary reactions and order is applicable for elementary as well as complex reactions?

52. Why can we not determine the order of a reaction by taking into consideration the balanced chemical equation?
IV. Matching Type

Note: In the following questions match the items of Column I with appropriate item given in Column II.

53. Match the graph given in Column I with the order of reaction given in Column II. More than one item in Column I may link to the same item of Column II.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i)</td>
<td>(a) 1st order</td>
</tr>
<tr>
<td></td>
<td>(b) Zero order</td>
</tr>
<tr>
<td>(iii)</td>
<td>(a) 1st order</td>
</tr>
<tr>
<td>(iv)</td>
<td>(b) Zero order</td>
</tr>
</tbody>
</table>

54. Match the statements given in Column I and Column II

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) Catalyst alters the rate of reaction</td>
<td>(a) cannot be fraction or zero</td>
</tr>
<tr>
<td>(ii) Molecularity</td>
<td>(b) proper orientation is not there always</td>
</tr>
</tbody>
</table>

57 Chemical Kinetics
(iii) Second half life of first order reaction (c) by lowering the activation energy
(iv) \(e^{-E_a/RT} \) (d) is same as the first
(v) Energetically favourable reactions (e) total probability is one are sometimes slow
(vi) Area under the Maxwell Boltzman curve is constant (f) refers to the fraction of molecules with energy equal to or greater than activation energy

55. Match the items of Column I and Column II.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) Diamond</td>
<td>(a) short interval of time</td>
</tr>
<tr>
<td>(ii) Instantaneous rate</td>
<td>(b) ordinarily rate of conversion is imperceptible</td>
</tr>
<tr>
<td>(iii) Average rate</td>
<td>(c) long duration of time</td>
</tr>
</tbody>
</table>

56. Match the items of Column I and Column II.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) Mathematical expression for rate of reaction</td>
<td>(a) rate constant</td>
</tr>
<tr>
<td>(ii) Rate of reaction for zero order reaction is equal to</td>
<td>(b) rate law</td>
</tr>
<tr>
<td>(iii) Units of rate constant for zero order reaction is same as that of</td>
<td>(c) order of slowest step</td>
</tr>
<tr>
<td>(iv) Order of a complex reaction is determined by</td>
<td>(d) rate of a reaction</td>
</tr>
</tbody>
</table>

V. Assertion and Reason Type

Note: In the following questions a statement of assertion followed by a statement of reason is given. Choose the correct answer out of the following choices.

(i) Both assertion and reason are correct and the reason is correct explanation of assertion.
(ii) Both assertion and reason are correct but reason does not explain assertion.
(iii) Assertion is correct but reason is incorrect.
(iv) Both assertion and reason are incorrect.
(v) Assertion is incorrect but reason is correct.
57. **Assertion** : Order of the reaction can be zero or fractional.
Reason : We cannot determine order from balanced chemical equation.

58. **Assertion** : Order and molecularity are same.
Reason : Order is determined experimentally and molecularity is the sum of the stoichiometric coefficient of rate determining elementary step.

59. **Assertion** : The enthalpy of reaction remains constant in the presence of a catalyst.
Reason : A catalyst participating in the reaction, forms different activated complex and lowers down the activation energy but the difference in energy of reactant and product remains the same.

60. **Assertion** : All collision of reactant molecules lead to product formation.
Reason : Only those collisions in which molecules have correct orientation and sufficient kinetic energy lead to compound formation.

61. **Assertion** : Rate constants determined from Arrhenius equation are fairly accurate for simple as well as complex molecules.
Reason : Reactant molecules undergo chemical change irrespective of their orientation during collision.

VI. Long Answer Type

62. All energetically effective collisions do not result in a chemical change. Explain with the help of an example.

63. What happens to most probable kinetic energy and the energy of activation with increase in temperature?

64. Describe how does the enthalpy of reaction remain unchanged when a catalyst is used in the reaction.

65. Explain the difference between instantaneous rate of a reaction and average rate of a reaction.

66. With the help of an example explain what is meant by pseudo first order reaction.
I. Multiple Choice Questions (Type-I)

1. (iii) 2. (iii) 3. (ii) 4. (i) 5. (ii) 6. (i)
7. (iv) 8. (iii) 9. (iii) 10. (ii) 11. (i) 12. (iii)
19. (ii) 20. (ii)

II. Multiple Choice Questions (Type-II)

21. (i), (iii), (iv) 22. (i), (iv) 23. (i), (ii) 24. (i), (iv)
25. (i), (iii), (iv) 26. (i), (iv) 27. (i), (iii) 28. (i), (iv)
29. (i), (ii) 30. (ii), (iv) 31. (i), (iv) 32. (i), (iv)

III. Short Answer Type

33. Bimolecular reaction becomes kinetically first order when one of the reactants is in excess.

34. Rate = \(k [A]^0[B]^0 \) or Rate = \(k \)

35. See page no. 99 of NCERT textbook for Class XII.

36. If the reaction is an elementary reaction, order is same as molecularity.

37. Three, because rate = \(k [A]^3 \)

38. \([R] = [R]_0 - kt\)

 for completion \([R] = 0\)

 \(\therefore t = \frac{[R]_0}{k}\)

39. During an elementary reaction, the number of atoms or ions colliding to react is referred to as molecularity. Had this been an elementary reaction the order of reaction with respect to \(B\) would have been 1, but in the given rate law it is \(\frac{3}{2}\). This indicates that the reaction is not an elementary reaction.

40. Apart from the energy considerations, the colliding molecules should also have proper orientation for effective collision. This condition might not be getting fulfilled in the reaction.

41. No, the molecularity can never be zero or a fractional number.
42. (i) Zero (ii) \(-k\) (iii) \(\text{mol L}^{-1} \text{s}^{-1}\)

43. This is because activation energy for the reaction is very high at room temperature.

44. At higher temperatures, larger fraction of colliding particles can cross the energy barrier (i.e. the activation energy), which leads to faster rate.

45. The activation energy for combustion reactions of fuels is very high at room temperature therefore they do not burn by themselves.

46. The probability of more than three molecules colliding simultaneously is very small. Hence possibility of molecularity being three is very low.

47. The rate of a reaction depends on the concentration of reactants. As the reaction progresses, reactants start getting converted to products so the concentration of reactants decreases hence the rate decreases.

48. Thermodynamically the conversion of diamond to graphite is highly feasible but this reaction is very slow because its activation energy is high.

49. The reaction between KMnO\(_4\) and oxalic acid is very slow. By raising the temperature we can enhance the rate of reaction.

50. Molecularity is the number of molecules taking part in an elementary step. For this we require at least a single molecule leading to the value of minimum molecularity of one.

51. A complex reaction proceeds through several elementary reactions. Numbers of molecules involved in each elementary reaction may be different i.e., the molecularity of each step may be different. Therefore, discussion of molecularity of overall complex reaction is meaningless. On the other hand, order of a complex reaction is determined by the slowest step in its mechanism and is not meaningless even in the case of complex reactions.

52. Balanced chemical equation often leads to incorrect order or rate law. For example the following reaction seems to be a tenth order reaction.

\[
\text{KClO}_3 + 6\text{FeSO}_4 + 3\text{H}_2\text{SO}_4 \rightarrow \text{KCl} + 3\text{H}_2\text{O} + 3\text{Fe}_2(\text{SO}_4)_3
\]

This is actually a second order reaction. Actually the reaction is complex and occurs in several steps. The order of such reaction is determined by the slowest step in the reaction mechanism. Order is determined experimentally and is confined to the dependence of observed rate of reaction on the concentration of reactants.

IV. Matching Type

53. (i) \(\rightarrow\) (a) (ii) \(\rightarrow\) (b) (iii) \(\rightarrow\) (b) (iv) \(\rightarrow\) (a)

54. (i) \(\rightarrow\) (c) (ii) \(\rightarrow\) (a) (iii) \(\rightarrow\) (d) (iv) \(\rightarrow\) (f) (v) \(\rightarrow\) (b) (vi) \(\rightarrow\) (e)

55. (i) \(\rightarrow\) (b) (ii) \(\rightarrow\) (a) (iii) \(\rightarrow\) (c)

56. (i) \(\rightarrow\) (b) (ii) \(\rightarrow\) (a) (iii) \(\rightarrow\) (d) (iv) \(\rightarrow\) (d)
V. Assertion and Reason Type

57. (ii) 58. (v) 59. (i) 60. (v) 61. (iii)

VI. Long Answer Type

62. **Hint:** Proper orientation of molecule should be explained in detail.

63. **Hint:**
- Flattening of curve and shifting of maxima towards high energy value.
- Area under the curve beyond the activation energy increases.

64. **Hint:**
- Enthalpy is a state function.
- Difference in energy between reactants and product is constant.

65. See NCERT textbook for Class XII.

66. See NCERT textbook for Class XII.
I. Multiple Choice Questions (Type-I)

1. In the extraction of chlorine by electrolysis of brine ____________.
 (i) oxidation of Cl\(^{-}\) ion to chlorine gas occurs.
 (ii) reduction of Cl\(^{-}\) ion to chlorine gas occurs.
 (iii) For overall reaction \(\Delta G^0\) has negative value.
 (iv) a displacement reaction takes place.

2. When copper ore is mixed with silica, in a reverberatory furnace copper matte is produced. The copper matte contains ____________.
 (i) sulphides of copper (II) and iron (II)
 (ii) sulphides of copper (II) and iron (III)
 (iii) sulphides of copper (I) and iron (II)
 (iv) sulphides of copper (I) and iron (III)

3. Which of the following reactions is an example of autoreduction?
 (i) \(\text{Fe}_3\text{O}_4 + 4\text{CO} \rightarrow 3\text{Fe} + 4\text{CO}_2\)
 (ii) \(\text{Cu}_2\text{O} + \text{C} \rightarrow 2\text{Cu} + \text{CO}\)
 (iii) \(\text{Cu}^{2+} (\text{aq}) + \text{Fe} (\text{s}) \rightarrow \text{Cu} (\text{s}) + \text{Fe}^{2+} (\text{aq})\)
 (iv) \(\text{Cu}_2\text{O} + \frac{1}{2} \text{Cu}_2\text{S} \rightarrow 3\text{Cu} + \frac{1}{2} \text{SO}_2\)
4. A number of elements are available in earth’s crust but most abundant elements are ____________.
 (i) Al and Fe
 (ii) Al and Cu
 (iii) Fe and Cu
 (iv) Cu and Ag

5. Zone refining is based on the principle that ____________.
 (i) impurities of low boiling metals can be separated by distillation.
 (ii) impurities are more soluble in molten metal than in solid metal.
 (iii) different components of a mixture are differently adsorbed on an adsorbent.
 (iv) vapours of volatile compound can be decomposed in pure metal.

6. In the extraction of copper from its sulphide ore, the metal is formed by the reduction of Cu$_2$O with
 (i) FeS
 (ii) CO
 (iii) Cu$_2$S
 (iv) SO$_2$

7. Brine is electrolysed by using inert electrodes. The reaction at anode is ________.
 (i) Cl$^–$(aq.) $\rightarrow \frac{1}{2}$ Cl$_2$(g) + e$^–$; \(E_{\text{Cell}}^0 = 1.36V\)
 (ii) 2H$_2$O (l) \rightarrow O$_2$(g) + 4H$^+$ + 4e$^–$; \(E_{\text{Cell}}^0 = 1.23V\)
 (iii) Na$^+$ (aq.) + e$^–$ \rightarrow Na(s); \(E_{\text{Cell}}^0 = 2.71V\)
 (iv) H$^+$ (aq.) + e$^–$ $\rightarrow \frac{1}{2}$ H$_2$(g); \(E_{\text{Cell}}^0 = 0.00V\)

8. In the metallurgy of aluminium ________________.
 (i) Al$^{3+}$ is oxidised to Al (s).
 (ii) graphite anode is oxidised to carbon monoxide and carbon dioxide.
 (iii) oxidation state of oxygen changes in the reaction at anode.
 (iv) oxidation state of oxygen changes in the overall reaction involved in the process.

9. Electrolytic refining is used to purify which of the following metals?
 (i) Cu and Zn
 (ii) Ge and Si
 (iii) Zr and Ti
 (iv) Zn and Hg
10. Extraction of gold and silver involves leaching the metal with CN⁻ ion. The metal is recovered by ________________.
 (i) displacement of metal by some other metal from the complex ion.
 (ii) roasting of metal complex.
 (iii) calcination followed by roasting.
 (iv) thermal decomposition of metal complex.

 Note: Answer the questions 11-13 on the basis of Fig. 6.1.

11. Choose the correct option of temperature at which carbon reduces FeO to iron and produces CO.
 (i) Below temperature at point A.
 (ii) Approximately at the temperature corresponding to point A.
 (iii) Above temperature at point A but below temperature at point D.
 (iv) Above temperature at point A.
12. Below point ‘A’ FeO can _______.
 (i) be reduced by carbon monoxide only.
 (ii) be reduced by both carbon monoxide and carbon.
 (iii) be reduced by carbon only.
 (iv) not be reduced by both carbon and carbon monoxide.

13. For the reduction of FeO at the temperature corresponding to point D, which of the following statements is correct?
 (i) ΔG value for the overall reduction reaction with carbon monoxide is zero.
 (ii) ΔG value for the overall reduction reaction with a mixture of 1 mol carbon and 1 mol oxygen is positive.
 (iii) ΔG value for the overall reduction reaction with a mixture of 2 mol carbon and 1 mol oxygen will be positive.
 (iv) ΔG value for the overall reduction reaction with carbon monoxide is negative.

II. Multiple Choice Questions (Type-II)

Note: In the following questions two or more options may be correct.

14. At the temperature corresponding to which of the points in Fig.6.1, FeO will be reduced to Fe by coupling the reaction $2\text{FeO} \rightarrow 2\text{Fe} + \text{O}_2$ with all of the following reactions?
 (a) $\text{C} + \text{O}_2 \rightarrow \text{CO}_2$
 (b) $2\text{C} + \text{O}_2 \rightarrow 2\text{CO}$
 (c) $2\text{CO} + \text{O}_2 \rightarrow 2\text{CO}_2$
 (i) Point A
 (ii) Point B
 (iii) Point D
 (iv) Point E

15. Which of the following options are correct?
 (i) Cast iron is obtained by remelting pig iron with scrap iron and coke using hot air blast.
 (ii) In extraction of silver, silver is extracted as cationic complex.
 (iii) Nickel is purified by zone refining.
 (iv) Zr and Ti are purified by van Arkel method.

16. In the extraction of aluminium by Hall-Heroult process, purified Al_2O_3 is mixed with CaF_2 to
 (i) lower the melting point of Al_2O_3.
 (ii) increase the conductivity of molten mixture.
 (iii) reduce Al^{3+} into Al(s).
 (iv) acts as catalyst.
17. Which of the following statements is correct about the role of substances added in the froth floatation process?
 (i) Collectors enhance the non-wettability of the mineral particles.
 (ii) Collectors enhance the wettability of gangue particles.
 (iii) By using depressants in the process two sulphide ores can be separated.
 (iv) Froth stabilisers decrease wettability of gangue.

18. In the Froth Floatation process, zinc sulphide and lead sulphide can be separated by ____________.
 (i) using collectors.
 (ii) adjusting the proportion of oil to water.
 (iii) using depressant.
 (iv) using froth stabilisers.

19. Common impurities present in bauxite are ____________.
 (i) CuO
 (ii) ZnO
 (iii) Fe₂O₃
 (iv) SiO₂

20. Which of the following ores are concentrated by froth floatation?
 (i) Haematite
 (ii) Galena
 (iii) Copper pyrites
 (iv) Magnetite

21. Which of the following reactions occur during calcination?
 (i) CaCO₃ → CaO + CO₂
 (ii) 2FeS₂ + \(\frac{11}{2} \) O₂ → Fe₂O₃ + 4SO₂
 (iii) Al₂O₃·xH₂O → Al₂O₃ + x H₂O
 (iv) ZnS + \(\frac{3}{2} \) O₂ → ZnO + SO₂

22. For the metallurgical process of which of the ores calcined ore can be reduced by carbon?
 (i) haematite
 (ii) calamine
 (iii) iron pyrites
 (iv) sphalerite
23. The main reactions occurring in blast furnace during extraction of iron from haematite are ________.
 (i) \(\text{Fe}_2\text{O}_3 + 3\text{CO} \rightarrow 2\text{Fe} + 3\text{CO}_2 \)
 (ii) \(\text{FeO} + \text{SiO}_2 \rightarrow \text{FeSiO}_3 \)
 (iii) \(\text{Fe}_2\text{O}_3 + 3\text{C} \rightarrow 2\text{Fe} + 3\text{CO} \)
 (iv) \(\text{CaO} + \text{SiO}_2 \rightarrow \text{CaSiO}_3 \)

24. In which of the following method of purification, metal is converted to its volatile compound which is decomposed to give pure metal?
 (i) heating with stream of carbon monoxide.
 (ii) heating with iodine.
 (iii) liquation.
 (iv) distillation.

25. Which of the following statements are correct?
 (i) A depressant prevents certain type of particle to come to the froth.
 (ii) Copper matte contains \(\text{Cu}_2\text{S} \) and \(\text{ZnS} \).
 (iii) The solidified copper obtained from reverberatory furnace has blistered appearance due to evolution of \(\text{SO}_2 \) during the extraction.
 (iv) Zinc can be extracted by self-reduction.

26. In the extraction of chlorine from brine ____________.
 (i) \(\Delta G^\circ \) for the overall reaction is negative.
 (ii) \(\Delta G^\circ \) for the overall reaction is positive.
 (iii) \(E^\circ \) for overall reaction has negative value.
 (iv) \(E^\circ \) for overall reaction has positive value.

III. Short Answer Type

27. Why is an external emf of more than 2.2V required for the extraction of \(\text{Cl}_2 \) from brine?

28. At temperatures above 1073K coke can be used to reduce \(\text{FeO} \) to \(\text{Fe} \). How can you justify this reduction with Ellingham diagram?

29. Wrought iron is the purest form of iron. Write a reaction used for the preparation of wrought iron from cast iron. How can the impurities of sulphur, silicon and phosphorus be removed from cast iron?

30. How is copper extracted from low grade copper ores?

31. Write two basic requirements for refining of a metal by Mond process and by Van Arkel Method.

32. Although carbon and hydrogen are better reducing agents but they are not used to reduce metallic oxides at high temperatures. Why?
33. How do we separate two sulphide ores by Froth Floatation Method? Explain with an example.

34. The purest form of iron is prepared by oxidising impurities from cast iron in a reverberatory furnace. Which iron ore is used to line the furnace? Explain by giving reaction.

35. The mixture of compounds A and B is passed through a column of Al₂O₃ by using alcohol as eluant. Compound A is eluted in preference to compound B. Which of the compounds A or B, is more readily adsorbed on the column?

36. Why is sulphide ore of copper heated in a furnace after mixing with silica?

37. Why are sulphide ores converted to oxide before reduction?

38. Which method is used for refining Zr and Ti? Explain with equation.

39. What should be the considerations during the extraction of metals by electrochemical method?

40. What is the role of flux in metallurgical processes?

41. How are metals used as semiconductors refined? What is the principle of the method used?

42. Write down the reactions taking place in Blast furnace related to the metallurgy of iron in the temperature range 500-800 K.

43. Give two requirements for vapour phase refining.

44. Write the chemical reactions involved in the extraction of gold by cyanide process. Also give the role of zinc in the extraction.

IV. Matching Type

Note: Match the items given in Column I and Column II in the following questions.

45. Match the items of Column I with items of Column II and assign the correct code:

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) Pendulum</td>
<td>(1) Chrome steel</td>
</tr>
<tr>
<td>(B) Malachite</td>
<td>(2) Nickel steel</td>
</tr>
<tr>
<td>(C) Calamine</td>
<td>(3) Na₃AlF₆</td>
</tr>
<tr>
<td>(D) Cryolite</td>
<td>(4) CuCO₃·Cu (OH)₂</td>
</tr>
<tr>
<td></td>
<td>(5) ZnCO₃</td>
</tr>
</tbody>
</table>

Code:

(i) A (1) B (2) C (3) D (4)
(ii) A (2) B (4) C (5) D (3)
(iii) A (2) B (3) C (4) D (5)
(iv) A (4) B (5) C (3) D (2)
46. Match the items of Column I with the items of Column II and assign the correct code:

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) Coloured bands</td>
<td>(1) Zone refining</td>
</tr>
<tr>
<td>(B) Impure metal to volatile complex</td>
<td>(2) Fractional distillation</td>
</tr>
<tr>
<td>(C) Purification of Ge and Si</td>
<td>(3) Mond Process</td>
</tr>
<tr>
<td>(D) Purification of mercury</td>
<td>(4) Chromatography</td>
</tr>
</tbody>
</table>

Code:

(i) A (1) B (2) C (4) D (5)
(ii) A (4) B (3) C (1) D (2)
(iii) A (3) B (4) C (2) D (1)
(iv) A (5) B (4) C (3) D (2)

47. Match items of Column I with the items of Column II and assign the correct code:

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) Cyanide process</td>
<td>(1) Ultrapure Ge</td>
</tr>
<tr>
<td>(B) Froth Floatation Process</td>
<td>(2) Dressing of ZnS</td>
</tr>
<tr>
<td>(C) Electrolytic reduction</td>
<td>(3) Extraction of Al</td>
</tr>
<tr>
<td>(D) Zone refining</td>
<td>(4) Extraction of Au</td>
</tr>
</tbody>
</table>

Code:

(i) A (4) B (2) C (3) D (1)
(ii) A (2) B (3) C (1) D (5)
(iii) A (1) B (2) C (3) D (4)
(iv) A (3) B (4) C (5) D (1)

48. Match the items of Column I with the items of Column II and assign the correct code:

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) Sapphire</td>
<td>(1) Al₂O₃</td>
</tr>
<tr>
<td>(B) Sphalerite</td>
<td>(2) NaCN</td>
</tr>
<tr>
<td>(C) Depressant</td>
<td>(3) Co</td>
</tr>
<tr>
<td>(D) Corundum</td>
<td>(4) ZnS</td>
</tr>
</tbody>
</table>

| (E) ZnS | (5) Fe₂O₃ |
49. Match the items of Column I with items of Column II and assign the correct code:

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) Blistered Cu</td>
<td>(1) Aluminium</td>
</tr>
<tr>
<td>(B) Blast furnace</td>
<td>(2) (2\text{Cu}_2\text{O} + \text{Cu}_2\text{S} \rightarrow 6\text{Cu} + \text{SO}_2)</td>
</tr>
<tr>
<td>(C) Reverberatory furnace</td>
<td>(3) Iron</td>
</tr>
<tr>
<td>(D) Hall-Heroult process</td>
<td>(4) (\text{FeO} + \text{SiO}_2 \rightarrow \text{FeSiO}_3)</td>
</tr>
<tr>
<td></td>
<td>(5) (2\text{Cu}_2\text{S} + 3\text{O}_2 \rightarrow 2\text{Cu}_2\text{O} + 2\text{SO}_2)</td>
</tr>
</tbody>
</table>

Code:

(i) A (2) B (3) C (4) D (1)
(ii) A (1) B (2) C (3) D (5)
(iii) A (5) B (4) C (3) D (2)
(iv) A (4) B (5) C (3) D (2)

V. Assertion and Reason Type

Note: In the following questions a statement of assertion followed by a statement of reason is given. Choose the correct answer out of the following choices.

(i) Both assertion and reason are true and reason is the correct explanation of assertion.
(ii) Both assertion and reason are true but reason is not the correct explanation of assertion.
(iii) Assertion is true but reason is false.
(iv) Assertion is false but reason is true.
(v) Assertion and reason both are wrong.

50. **Assertion**: Nickel can be purified by Mond process.
 Reason: \(\text{Ni (CO)}_4\) is a volatile compound which decomposes at 460K to give pure Ni.

51. **Assertion**: Zirconium can be purified by Van Arkel method.
 Reason: \(\text{ZrI}_4\) is volatile and decomposes at 1800K.
52. **Assertion** : Sulphide ores are concentrated by Froth Flotation method.
 Reason : Cresols stabilise the froth in Froth Flotation method.

53. **Assertion** : Zone refining method is very useful for producing semiconductors.
 Reason : Semiconductors are of high purity.

54. **Assertion** : Hydrometallurgy involves dissolving the ore in a suitable reagent followed by precipitation by a more electropositive metal.
 Reason : Copper is extracted by hydrometallurgy.

VI. Long Answer Type

55. Explain the following :

 (a) CO₂ is a better reducing agent below 710K whereas CO is a better reducing agent above 710K.

 (b) Generally sulphide ores are converted into oxides before reduction.

 (c) Silica is added to the sulphide ore of copper in the reverberatory furnace.

 (d) Carbon and hydrogen are not used as reducing agents at high temperatures.

 (e) Vapour phase refining method is used for the purification of Ti.
ANSWERS

I. Multiple Choice Questions (Type-I)

1. (iii) 2. (iii) 3. (iv) 4. (i) 5. (ii) 6. (iii)
7. (i) 8. (ii) 9. (i) 10. (i) 11. (iv) 12. (i)
13. (i)

II. Multiple Choice Questions (Type-II)

14. (ii), (iv) 15. (i), (iv) 16. (i), (ii) 17. (i), (iii)
18. (ii), (iii) 19. (iii), (iv) 20. (ii), (iii) 21. (i), (iii)
22. (i), (ii) 23. (i), (iv) 24. (i), (ii) 25. (i), (iii)
26. (ii), (iii)

III. Short Answer Type

27. For the reaction

\[2\text{Cl}^- (aq) + 2\text{H}_2\text{O} (l) \rightarrow 2\text{OH}^- (aq) + \text{H}_2(g) + \text{Cl}_2 (g) \]

Value of \(\Delta G \) is +422kJ. Using the equation \(\Delta G = -nFE \) the value of \(E \) comes out to be -2.2V. Therefore extraction of \(\text{Cl}_2 \) from brine will require an external emf of greater than 2.2V.

28. As per Ellingham diagram at temperatures greater than 1073 K \(\Delta G (\text{C, CO}) < \Delta G (\text{Fe, FeO}) \). Hence coke can reduce \(\text{FeO} \) to \(\text{Fe} \).

29. \(\text{Fe}_2\text{O}_3 + 3\text{C} \rightarrow 2\text{Fe} + 3\text{CO} \)

Limestone is added as flux and sulphur, silicon and phosphorus change to their oxides and pass into the slag.

30. Copper is extracted by hydrometallurgy from low grade copper ores. It is leached out using acid or bacteria. The solution containing \(\text{Cu}^{2+} \) is treated with scrap iron, \(\text{Zn} \) or \(\text{H}_2 \).

\[\text{Cu}^{2+} (aq) + \text{H}_2 (g) \rightarrow \text{Cu}(s) + 2\text{H}^+ (aq) \]

\[\text{Cu}^{2+} + \text{Fe}(s) \rightarrow \text{Fe}^{2+} (aq) + \text{Cu}(s) \]

31. Basic requirements for both processes are:

(i) The metal should form a volatile compound with an available reagent.
(ii) The volatile compound should be easily decomposable, so that recovery of metal is easy.

32. It is because at high temperature carbon and hydrogen react with metals to form carbides and hydrides respectively.
33. Two sulphide ores can be separated by adjusting proportion of oil to water or by using depressants. For example, in the case of an ore containing ZnS and PbS, the depressant NaCN is used. It forms complex with ZnS and prevents it from coming with froth but PbS remains with froth.

34. Haematite
\[\text{Fe}_2\text{O}_3 + 3\text{C} \rightarrow 2\text{Fe} + 3\text{CO} \]

35. Since compound ‘A’ comes out before compound ‘B’, the compound ‘B’ is more readily adsorbed on column.

36. Iron oxide present as impurity in sulphide ore of copper forms slag which is iron silicate and copper is produced in the form of copper matte.
\[\text{FeO} + \text{SiO}_2 \rightarrow \text{FeSiO}_3 \]

37. Sulphides are not reduced easily but oxides are easily reduced.

38. van Arkel method is used for refining Zr and Ti. In this method crude metal is heated with iodine.
\[\text{Zr} + 2\text{I}_2 \rightarrow \text{ZrI}_4 \]
\[\text{ZrI}_4 \xrightarrow{1800K} \text{Zr} + 2\text{I}_2 \]

39. Generally two things are considered so that proper precautions can be taken.
(i) reactivity of metal produced.
(ii) suitability of electrodes.

40. Flux is used for making the molten mass more conducting.

41. Semiconducting metal is produced by zone refining method which is based on the principle that the impurities are more soluble in melt than in the solid state of metals.

42. \[3\text{Fe}_2\text{O}_3 + \text{CO} \rightarrow 2\text{Fe}_3\text{O}_4 + \text{CO}_2 \]
\[\text{Fe}_3\text{O}_4 + 4\text{CO} \rightarrow 3\text{Fe} + 4\text{CO}_2 \]
\[\text{Fe}_2\text{O}_3 + \text{CO} \rightarrow 2\text{FeO} + \text{CO}_2 \]

43. (i) The metal should form a volatile compound with available reagent.
(ii) The volatile compound should be easily decomposable so that the recovery is easy.

44. \[4\text{Au (s)} + 8\text{CN}^- (\text{aq}) + 2\text{H}_2\text{O (aq)} + \text{O}_2 (\text{g}) \rightarrow 4 [\text{Au (CN)}_2]^-(\text{aq}) + 4\text{OH}^- (\text{aq}) \]
\[2[\text{Au(CN)}_2]^-(\text{aq}) + \text{Zn(s)} \rightarrow 2\text{Au(s)} + [\text{Zn (CN)}_4]^{2-} (\text{aq}) \]
In this reaction zinc acts as a reducing agent.
IV. Matching Type

45. (ii) 46. (ii) 47. (i) 48. (i) 49. (i)

V. Assertion and Reason Type

50. (i) 51. (i) 52. (ii) 53. (ii) 54. (ii)

VI. Long Answer Type

55. (a) **Hint**: Use Ellingham diagram

(b) **Hint**: Oxides are easier to reduce. See Ellingham diagram.

(c) **Hint**: Sulphide ore of copper contains iron as impurity which is removed as iron silicate (slag)

\[
\text{FeO + SiO}_2 \rightarrow \text{FeSiO}_3
\]

(Slag)

(d) **Hint**: Carbon and hydrogen react with metals at high temperature to form carbides and hydrides respectively.

(e) **Hint**: Ti reacts with iodine to form volatile TiI\textsubscript{4} which decomposes at high temperature to give extra pure titanium.
1. On addition of conc. H_2SO_4 to a chloride salt, colourless fumes are evolved but in case of iodide salt, violet fumes come out. This is because
 (i) H_2SO_4 reduces HI to I_2
 (ii) HI is of violet colour
 (iii) HI gets oxidised to I_2
 (iv) HI changes to HIO_3

2. In qualitative analysis when H_2S is passed through an aqueous solution of salt acidified with dil. HCl, a black precipitate is obtained. On boiling the precipitate with dil. HNO_3, it forms a solution of blue colour. Addition of excess of aqueous solution of ammonia to this solution gives _________.
 (i) deep blue precipitate of Cu(OH)_2
 (ii) deep blue solution of $[\text{Cu(NH}_3)_4]^{2+}$
 (iii) deep blue solution of $\text{Cu(NO}_3)_2$
 (iv) deep blue solution of $\text{Cu(OH)}_2.\text{Cu(NO}_3)_2$

3. In a cyclotrimetaphosphoric acid molecule, how many single and double bonds are present?
 (i) 3 double bonds; 9 single bonds
 (ii) 6 double bonds; 6 single bonds
 (iii) 3 double bonds; 12 single bonds
 (iv) Zero double bonds; 12 single bonds

4. Which of the following elements can be involved in π–π bonding?
 (i) Carbon
 (ii) Nitrogen
5. Which of the following pairs of ions are isoelectronic and isostructural?
 (i) \(\text{CO}_3^{2-}, \text{NO}_3^- \)
 (ii) \(\text{ClO}_3^-, \text{CO}_2^2 \)
 (iii) \(\text{SO}_3^{2-}, \text{NO}_3^- \)
 (iv) \(\text{ClO}_3^-, \text{SO}_3^2 \)

6. Affinity for hydrogen decreases in the group from fluorine to iodine. Which of the halogen acids should have highest bond dissociation enthalpy?
 (i) \(\text{HF} \)
 (ii) \(\text{HCl} \)
 (iii) \(\text{HBr} \)
 (iv) \(\text{HI} \)

7. Bond dissociation enthalpy of \(E—H \) (\(E = \text{element} \)) bonds is given below. Which of the compounds will act as strongest reducing agent?

<table>
<thead>
<tr>
<th>Compound</th>
<th>(\Delta_{\text{dis}}) (E—H)/kJ mol(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{NH}_3)</td>
<td>389</td>
</tr>
<tr>
<td>(\text{PH}_3)</td>
<td>322</td>
</tr>
<tr>
<td>(\text{AsH}_3)</td>
<td>297</td>
</tr>
<tr>
<td>(\text{SbH}_3)</td>
<td>255</td>
</tr>
</tbody>
</table>

8. On heating with concentrated NaOH solution in an inert atmosphere of \(\text{CO}_2 \), white phosphorus gives a gas. Which of the following statement is incorrect about the gas?
 (i) It is highly poisonous and has smell like rotten fish.
 (ii) It’s solution in water decomposes in the presence of light.
 (iii) It is more basic than \(\text{NH}_3 \).
 (iv) It is less basic than \(\text{NH}_3 \).

9. Which of the following acids forms three series of salts?
 (i) \(\text{H}_3\text{PO}_2 \)
 (ii) \(\text{H}_3\text{BO}_3 \)
 (iii) \(\text{H}_3\text{PO}_4 \)
 (iv) \(\text{H}_3\text{PO}_3 \)

10. Strong reducing behaviour of \(\text{H}_3\text{PO}_2 \) is due to
 (i) Low oxidation state of phosphorus
 (ii) Presence of two –OH groups and one P–H bond
(iii) Presence of one –OH group and two P–H bonds
(iv) High electron gain enthalpy of phosphorus

11. On heating lead nitrate forms oxides of nitrogen and lead. The oxides formed are ______.
 (i) N_2O, PbO
 (ii) NO_2, PbO
 (iii) NO, PbO
 (iv) NO, PbO$_2$

12. Which of the following elements does not show allotropy?
 (i) Nitrogen
 (ii) Bismuth
 (iii) Antimony
 (iv) Arsenic

13. Maximum covalency of nitrogen is _____________.
 (i) 3
 (ii) 5
 (iii) 4
 (iv) 6

14. Which of the following statements is wrong?
 (i) Single N–N bond is stronger than the single P–P bond.
 (ii) PH_3 can act as a ligand in the formation of coordination compound with transition elements.
 (iii) NO_2 is paramagnetic in nature.
 (iv) Covalency of nitrogen in N_2O_5 is four.

15. A brown ring is formed in the ring test for NO$_3^–$ ion. It is due to the formation of
 (i) $[Fe(H_2O)_6(NO)]^{2+}$
 (ii) FeSO$_4$.NO$_2$
 (iii) $[Fe(H_2O)_4(NO)_2]^{2+}$
 (iv) FeSO$_4$.HNO$_3$

16. Elements of group-15 form compounds in +5 oxidation state. However, bismuth forms only one well characterised compound in +5 oxidation state. The compound is
 (i) Bi$_2$O$_5$
 (ii) BiF$_5$
 (iii) BiCl$_5$
 (iv) Bi$_2$S$_5$
17. On heating ammonium dichromate and barium azide separately we get
 (i) N_2 in both cases
 (ii) N_2 with ammonium dichromate and NO with barium azide
 (iii) N_2O with ammonium dichromate and N_2 with barium azide
 (iv) N_2O with ammonium dichromate and NO_2 with barium azide

18. In the preparation of HNO$_3$, we get NO gas by catalytic oxidation of ammonia. The moles of NO produced by the oxidation of two moles of NH$_3$ will be ______.
 (i) 2
 (ii) 3
 (iii) 4
 (iv) 6

19. The oxidation state of central atom in the anion of compound NaH$_2$PO$_2$ will be ______.
 (i) +3
 (ii) +5
 (iii) +1
 (iv) −3

20. Which of the following is not tetrahedral in shape?
 (i) NH$_4^+$
 (ii) SiCl$_4$
 (iii) SF$_4$
 (iv) SO$_4^{2-}$

21. Which of the following are peroxoacids of sulphur?
 (i) H$_2$SO$_5$ and H$_2$S$_2$O$_8$
 (ii) H$_2$SO$_5$ and H$_2$S$_2$O$_7$
 (iii) H$_2$S$_2$O$_7$ and H$_2$S$_2$O$_8$
 (iv) H$_2$S$_2$O$_6$ and H$_2$S$_2$O$_7$

22. Hot conc. H$_2$SO$_4$ acts as moderately strong oxidising agent. It oxidises both metals and nonmetals. Which of the following element is oxidised by conc. H$_2$SO$_4$ into two gaseous products?
 (i) Cu
 (ii) S
 (iii) C
 (iv) Zn

23. A black compound of manganese reacts with a halogen acid to give greenish yellow gas. When excess of this gas reacts with NH$_3$ an unstable trihalide is formed. In this process the oxidation state of nitrogen changes from _________.
 (i) −3 to +3
 (ii) −3 to 0
 (iii) −3 to +5
 (iv) 0 to −3
24. In the preparation of compounds of Xe, Bartlett had taken O_2^+ Pt F_6^- as a base compound. This is because
 (i) both O_2 and Xe have same size.
 (ii) both O_2 and Xe have same electron gain enthalpy.
 (iii) both O_2 and Xe have almost same ionisation enthalpy.
 (iv) both Xe and O_2 are gases.

25. In solid state PCl$_5$ is a ________.
 (i) covalent solid
 (ii) octahedral structure
 (iii) ionic solid with [PCl$_6$]$^+$ octahedral and [PCl$_4$]$^-$ tetrahedra
 (iv) ionic solid with [PCl$_4$]$^+$ tetrahedral and [PCl$_6$]$^-$ octahedra

26. Reduction potentials of some ions are given below. Arrange them in decreasing order of oxidising power.

<table>
<thead>
<tr>
<th>Ion</th>
<th>ClO$_4^-$</th>
<th>IO$_4^-$</th>
<th>BrO$_4^-$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduction potential E^0/V</td>
<td>$E^0=1.19V$</td>
<td>$E^0=1.65V$</td>
<td>$E^0=1.74V$</td>
</tr>
</tbody>
</table>
 (i) ClO$_4^-$ > IO$_4^-$ > BrO$_4^-$
 (ii) IO$_4^-$ > BrO$_4^-$ > ClO$_4^-$
 (iii) BrO$_4^-$ > IO$_4^-$ > ClO$_4^-$
 (iv) BrO$_4^-$ > ClO$_4^-$ > IO$_4^-$

27. Which of the following is isoelectronic pair?
 (i) ICl$_2$, ClO$_2$
 (ii) BrO$_2^-$, BrF$_2^+$
 (iii) ClO$_2^-$, BrF
 (iv) CN$^-$, O$_3$

II. Multiple Choice Questions (Type-II)

Note: In the following questions two or more options may be correct.

28. If chlorine gas is passed through hot NaOH solution, two changes are observed in the oxidation number of chlorine during the reaction. These are ________ and ________.
 (i) 0 to +5
 (ii) 0 to +3
 (iii) 0 to −1
 (iv) 0 to +1
29. Which of the following options are not in accordance with the property mentioned against them?
(i) $F_2 > Cl_2 > Br_2 > I_2$ Oxidising power.
(ii) $MI > MBr > MCl > MF$ Ionic character of metal halide.
(iii) $F_2 > Cl_2 > Br_2 > I_2$ Bond dissociation enthalpy.
(iv) $HI < HBr < HCl < HF$ Hydrogen-halogen bond strength.

30. Which of the following is correct for P_4 molecule of white phosphorus?
(i) It has 6 lone pairs of electrons.
(ii) It has six P–P single bonds.
(iii) It has three P–P single bonds.
(iv) It has four lone pairs of electrons.

31. Which of the following statements are correct?
(i) Among halogens, radius ratio between iodine and fluorine is maximum.
(ii) Leaving F—F bond, all halogens have weaker X—X bond than X—X’ bond in interhalogens.
(iii) Among interhalogen compounds maximum number of atoms are present in iodine fluoride.
(iv) Interhalogen compounds are more reactive than halogen compounds.

32. Which of the following statements are correct for SO_2 gas?
(i) It acts as bleaching agent in moist conditions.
(ii) It’s molecule has linear geometry.
(iii) It’s dilute solution is used as disinfectant.
(iv) It can be prepared by the reaction of dilute H_2SO_4 with metal sulphide.

33. Which of the following statements are correct?
(i) All the three N—O bond lengths in HNO$_3$ are equal.
(ii) All P—Cl bond lengths in PCl$_3$ molecule in gaseous state are equal.
(iii) P_4 molecule in white phosphorus have angular strain therefore white phosphorus is very reactive.
(iv) PCl is ionic in solid state in which cation is tetrahedral and anion is octahedral.

34. Which of the following orders are correct as per the properties mentioned against each?
(i) $As_2O_3 < SiO_2 < P_2O_3 < SO_2$ Acid strength.
(ii) $AsH_3 < PH_3 < NH_3$ Enthalpy of vapourisation.
(iii) $S < O < Cl < F$ More negative electron gain enthalpy.
(iv) $H_2O > H_2S > H_2Se > H_2Te$ Thermal stability.
35. Which of the following statements are correct?
 (i) S–S bond is present in H₂S₂O₆.
 (ii) In peroxosulphuric acid (H₂SO₅) sulphur is in +6 oxidation state.
 (iii) Iron powder along with Al₂O₃ and K₂O is used as a catalyst in the preparation of NH₃ by Haber’s process.
 (iv) Change in enthalpy is positive for the preparation of SO₃ by catalytic oxidation of SO₂.

36. In which of the following reactions conc. H₂SO₄ is used as an oxidising reagent?
 (i) CaF₂ + H₂SO₄ → CaSO₄ + 2HF
 (ii) 2HI + H₂SO₄ → I₂ + SO₂ + 2H₂O
 (iii) Cu + 2H₂SO₄ → CuSO₄ + SO₂ + 2H₂O
 (iv) NaCl + H₂SO₄ → NaHSO₄ + HCl

37. Which of the following statements are true?
 (i) Only type of interactions between particles of noble gases are due to weak dispersion forces.
 (ii) Ionisation enthalpy of molecular oxygen is very close to that of xenon.
 (iii) Hydrolysis of XeF₆ is a redox reaction.
 (iv) Xenon fluorides are not reactive.

III. Short Answer Type

38. In the preparation of H₂SO₄ by Contact Process, why is SO₃ not absorbed directly in water to form H₂SO₄?

39. Write a balanced chemical equation for the reaction showing catalytic oxidation of NH₃ by atmospheric oxygen.

40. Write the structure of pyrophosphoric acid.

41. PH₃ forms bubbles when passed slowly in water but NH₃ dissolves. Explain why?

42. In PCl₅, phosphorus is in sp³d hybridised state but all its five bonds are not equivalent. Justify your answer with reason.

43. Why is nitric oxide paramagnetic in gaseous state but the solid obtained on cooling it is diamagnetic?

44. Give reason to explain why ClF₃ exists but FCl₃ does not exist.

45. Out of H₂O and H₂S, which one has higher bond angle and why?

46. SF₆ is known but SCl₆ is not. Why?

47. On reaction with Cl₂, phosphorus forms two types of halides ‘A’ and ‘B’. Halide ‘A’ is yellowish-white powder but halide ‘B’ is colourless oily liquid. Identify A and B and write the formulas of their hydrolysis products.
48. In the ring test of NO$_3^-$ ion, Fe$^{2+}$ ion reduces nitrate ion to nitric oxide, which combines with Fe$^{2+}$ (aq) ion to form brown complex. Write the reactions involved in the formation of brown ring.

49. Explain why the stability of oxoacids of chlorine increases in the order given below:

\[\text{HClO} < \text{HClO}_2 < \text{HClO}_3 < \text{HClO}_4 \]

50. Explain why ozone is thermodynamically less stable than oxygen.

51. P$_4$O$_6$ reacts with water according to equation P$_4$O$_6$ + 6H$_2$O \rightarrow 4H$_3$PO$_3$. Calculate the volume of 0.1 M NaOH solution required to neutralise the acid formed by dissolving 1.1 g of P$_4$O$_6$ in H$_2$O.

52. White phosphorus reacts with chlorine and the product hydrolyses in the presence of water. Calculate the mass of HCl obtained by the hydrolysis of the product formed by the reaction of 62 g of white phosphorus with chlorine in the presence of water.

53. Name three oxoacids of nitrogen. Write the disproportionation reaction of that oxoacid of nitrogen in which nitrogen is in +3 oxidation state.

54. Nitric acid forms an oxide of nitrogen on reaction with P$_4$O$_{10}$. Write the reaction involved. Also write the resonating structures of the oxide of nitrogen formed.

55. Phosphorus has three allotropic forms — (i) white phosphorus (ii) red phosphorus and (iii) black phosphorus. Write the difference between white and red phosphorus on the basis of their structure and reactivity.

56. Give an example to show the effect of concentration of nitric acid on the formation of oxidation product.

57. PCl$_3$ reacts with finely divided silver on heating and a white silver salt is obtained, which dissolves on adding excess aqueous NH$_3$ solution. Write the reactions involved to explain what happens.

58. Phosphorus forms a number of oxoacids. Out of these oxoacids phosphinic acid has strong reducing property. Write its structure and also write a reaction showing its reducing behaviour.

IV. Matching Type

Note: Match the items of Column I and Column II in the following questions.

59. Match the compounds given in Column I with the hybridisation and shape given in Column II and mark the correct option.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) Xe F$_6$</td>
<td>(1) sp3d3 – distorted octahedral</td>
</tr>
<tr>
<td>(B) Xe O$_3$</td>
<td>(2) sp3d2 - square planar</td>
</tr>
<tr>
<td>(C) Xe OF$_4$</td>
<td>(3) sp3 - pyramidal</td>
</tr>
<tr>
<td>(D) Xe F$_4$</td>
<td>(4) sp3 d2 - square pyramidal</td>
</tr>
</tbody>
</table>
60. Match the formulas of oxides given in Column I with the type of oxide given in Column II and mark the correct option.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) Pb$_3$O$_4$</td>
<td>(1) Neutral oxide</td>
</tr>
<tr>
<td>(B) N$_2$O</td>
<td>(2) Acidic oxide</td>
</tr>
<tr>
<td>(C) Mn$_2$O$_7$</td>
<td>(3) Basic oxide</td>
</tr>
<tr>
<td>(D) Bi$_2$O$_3$</td>
<td>(4) Mixed oxide</td>
</tr>
</tbody>
</table>

Code:

- (i) A (1) B (3) C (4) D (2)
- (ii) A (1) B (2) C (4) D (3)
- (iii) A (4) B (3) C (1) D (2)
- (iv) A (4) B (1) C (2) D (3)

61. Match the items of Columns I and II and mark the correct option.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) H$_2$SO$_4$</td>
<td>(1) Highest electron gain enthalpy</td>
</tr>
<tr>
<td>(B) CCl$_3$NO$_2$</td>
<td>(2) Chalcogen</td>
</tr>
<tr>
<td>(C) Cl$_2$</td>
<td>(3) Tear gas</td>
</tr>
<tr>
<td>(D) Sulphur</td>
<td>(4) Storage batteries</td>
</tr>
</tbody>
</table>

Code:

- (i) A (4) B (3) C (1) D (2)
- (ii) A (3) B (4) C (1) D (2)
- (iii) A (4) B (1) C (2) D (3)
- (iv) A (2) B (1) C (3) D (4)

62. Match the species given in Column I with the shape given in Column II and mark the correct option.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) SF$_4$</td>
<td>(1) Tetrahedral</td>
</tr>
<tr>
<td>(B) BrF$_3$</td>
<td>(2) Pyramidal</td>
</tr>
<tr>
<td>(C) BrO$_3^-$</td>
<td>(3) Sea-saw shaped</td>
</tr>
<tr>
<td>(D) NH$_4^+$</td>
<td>(4) Bent T-shaped</td>
</tr>
</tbody>
</table>

Code:

- (i) A (2) B (1) C (3) D (4)
63. Match the items of Columns I and II and mark the correct option.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>(1) He</td>
</tr>
<tr>
<td></td>
<td>its partial hydrolysis does not change oxidation state of central atom</td>
</tr>
<tr>
<td>(B)</td>
<td>(2) XeF₆</td>
</tr>
<tr>
<td></td>
<td>it is used in modern diving apparatus</td>
</tr>
<tr>
<td>(C)</td>
<td>(3) XeF₄</td>
</tr>
<tr>
<td></td>
<td>it is used to provide inert atmosphere for filling electrical bulbs</td>
</tr>
<tr>
<td>(D)</td>
<td>(4) Ar</td>
</tr>
<tr>
<td></td>
<td>its central atom is in sp^3d^2 hybridisation</td>
</tr>
</tbody>
</table>

Code:
(i) A (1) B (2) C (1) D (4)
(ii) A (1) B (4) C (2) D (1)
(iii) A (1) B (2) C (3) D (4)
(iv) A (1) B (4) C (3) D (2)

V. Assertion and Reason Type

Note: In the following questions a statement of assertion followed by a statement of reason is given. Choose the correct answer out of the following choices.

(i) Both assertion and reason are correct statements, and reason is the correct explanation of the assertion.
(ii) Both assertion and reason are correct statements, but reason is not the correct explanation of the assertion.
(iii) Assertion is correct, but reason is wrong statement.
(iv) Assertion is wrong but reason is correct statement.
(v) Both assertion and reason are wrong statements.

64. **Assertion**: N_2 is less reactive than P_4.
Reason: Nitrogen has more electron gain enthalpy than phosphorus.

65. **Assertion**: HNO_3 makes iron passive.
Reason: HNO_3 forms a protective layer of ferric nitrate on the surface of iron.
66. **Assertion**: HI cannot be prepared by the reaction of KI with concentrated H₂SO₄

Reason: HI has lowest H–X bond strength among halogen acids.

67. **Assertion**: Both rhombic and monoclinic sulphur exist as S₈ but oxygen exists as O₂.

Reason: Oxygen forms π–π multiple bond due to small size and small bond length but π–π bonding is not possible in sulphur.

68. **Assertion**: NaCl reacts with concentrated H₂SO₄ to give colourless fumes with pungent smell. But on adding MnO₂ the fumes become greenish yellow.

Reason: MnO₂ oxidises HCl to chlorine gas which is greenish yellow.

69. **Assertion**: SF₆ cannot be hydrolysed but SF₄ can be.

Reason: Six F atoms in SF₆ prevent the attack of H₂O on sulphur atom of SF₆.

VI. Long Answer Type

70. An amorphous solid “A” burns in air to form a gas “B” which turns lime water milky. The gas is also produced as a by-product during roasting of sulphide ore. This gas decolourises acidified aqueous KMnO₄ solution and reduces Fe³⁺ to Fe²⁺. Identify the solid “A” and the gas “B” and write the reactions involved.

71. On heating lead (II) nitrate gives a brown gas “A”. The gas “A” on cooling changes to colourless solid “B”. Solid “B” on heating with NO changes to a blue solid ‘C’. Identify ‘A’, ‘B’ and ‘C’ and also write reactions involved and draw the structures of ‘B’ and ‘C’.

72. On heating compound (A) gives a gas (B) which is a constituent of air. This gas when treated with 3 mol of hydrogen (H₂) in the presence of a catalyst gives another gas (C) which is basic in nature. Gas C on further oxidation in moist condition gives a compound (D) which is a part of acid rain. Identify compounds (A) to (D) and also give necessary equations of all the steps involved.
ANSWERS

I. Multiple Choice Questions (Type-I)

1. (iii) 2. (ii) 3. (i) 4. (iii) 5. (i) 6. (i)
7. (iv) 8. (iii) 9. (iii) 10. (iii) 11. (ii) 12. (i)
13. (iii) 14. (i) 15. (i) 16. (ii) 17. (i) 18. (i)
19. (iii) 20. (iii) 21. (i) 22. (iii) 23. (i) 24. (iii)
25. (iv) 26. (iii) 27. (ii)

II. Multiple Choice Questions (Type-II)

28. (i), (iii) 29. (ii), (iii) 30. (ii), (iv) 31. (i), (iii), (iv)
32. (i), (iii) 33. (iii), (iv) 34. (i), (iv) 35. (i), (ii)
36. (ii), (iii) 37. (i), (ii)

III. Short Answer Type

38. Acid fog is formed, which is difficult to condense.

39. $4\text{NH}_3 + 5\text{O}_2 \xrightarrow{\text{Pt/Rh gauge catalyst}} 4\text{NO} + 6\text{H}_2\text{O}$
 (From air)

40. \[
\begin{array}{cc}
\text{O} & \text{O} \\
\text{OH} & \text{OH}
\end{array}
\]
 Pyrophosphoric acid

41. NH_3 forms hydrogen bonds with water therefore it is soluble in it but PH_3 cannot form hydrogen bond with water so it escapes as gas.

42. [Hint: It has trigonal bipyramidal geometry]

43. In gaseous state NO_2 exists as monomer which has one unpaired electron but in solid state it dimerises to N_2O_4 so no unpaired electron is left hence solid form is diamagnetic.

44. Because fluorine is more electronegative as compared to chlorine.

45. Bond angle of H_2O is larger, because oxygen is more electronegative than sulphur therefore bond pair electron of O–H bond will be closer to oxygen and there will be more bond-pair bond-pair repulsion between bond pairs of two O–H bonds.

46. Due to small size of fluorine six F^- ion can be accommodated around sulphur whereas chloride ion is comparatively larger in size, therefore, there will be interionic repulsion.
47. A is PCl₅ (It is yellowish white powder)

\[P_4 + 10\text{Cl}_2 \rightarrow 4\text{PCl}_5 \]

B is PCl₃ (It is a colourless oily liquid)

\[P_4 + 6\text{Cl}_2 \rightarrow 4\text{PCl}_3 \]

Hydrolysis products are formed as follows:

\[\text{PCl}_3 + 3\text{H}_2\text{O} \rightarrow \text{H}_3\text{PO}_3 + 3\text{HCl} \]

\[\text{PCl}_5 + 4\text{H}_2\text{O} \rightarrow \text{H}_3\text{PO}_4 + 5\text{HCl} \]

48. NO₃⁻ + 3Fe²⁺ + 4H⁺ \rightarrow NO + 3Fe³⁺ + 2H₂O

\[\text{[Fe(H}_2\text{O)}\text{₆]}^{2+} + \text{NO} \rightarrow \text{[Fe(H}_2\text{O)}\text{₅(NO)}]^{2+} + \text{H}_2\text{O} \]

(brown complex)

49. Oxygen is more electronegative than chlorine, therefore dispersal of negative charge present on chlorine increases from ClO⁻ to ClO₄⁻ ion because number of oxygen atoms attached to chlorine is increasing. Therefore, stability of ions will increase in the order given below:

\[\text{ClO}^- < \text{ClO}_2^- < \text{ClO}_3^- < \text{ClO}_4^- \]

Thus due to increase in stability of conjugate base, acidic strength of corresponding acid increases in the following order

\[\text{HClO} < \text{HClO}_2 < \text{HClO}_3 < \text{HClO}_4 \]

50. See the NCERT textbook for Class XII, page 186.

51. \[P_4\text{O}_6 + 6\text{H}_2\text{O} \rightarrow 4\text{H}_3\text{PO}_3 \]

\[\text{H}_3\text{PO}_3 + 2\text{NaOH} \rightarrow \text{Na}_2\text{HPO}_3 + 2\text{H}_2\text{O} \] × 4 \hspace{1cm} \text{(Neutralisation reaction)}

\[P_4\text{O}_6 + 8\text{NaOH} \rightarrow 4\text{Na}_2\text{HPO}_4 + 2\text{H}_2\text{O} \]

1 mol \hspace{1cm} 8 mol

Product formed by 1 mol of P₄O₆ is neutralised by 8 mols of NaOH

\[\therefore \text{Product formed by } \frac{1.1}{220} \text{ mol of P}_4\text{O}_6 \text{ will be neutralised by } \frac{1.1}{220} \times 8 \text{ mol of NaOH} \]

Molarity of NaOH solution is 0.1M

\[\Rightarrow 0.1 \text{ mol NaOH is present in 1 L solution} \]

\[\therefore \frac{1.1}{220} \times 8 \text{ mol NaOH is present in } \frac{1.1 \times 8}{220 \times 0.1} \text{ L} = \frac{88}{220} \text{ L} = \frac{4}{10} \text{ L} = 0.4 \text{ L} = 400 \text{ mL of NaOH solution}. \]

52. \[P_4 + 6\text{Cl}_2 \rightarrow 4\text{PCl}_3 \]

\[\text{PCl}_3 + 3\text{H}_2\text{O} \rightarrow \text{H}_3\text{PO}_3 + 3\text{HCl} \] × 4

\[P_4 + 6\text{Cl}_2 + 12\text{H}_2\text{O} \rightarrow 4\text{H}_3\text{PO}_3 + 12\text{HCl} \]

1 mol of white phosphorus produces 12 mol of HCl
62 g of white phosphorus has been taken which is equivalent to \[\frac{62}{124} = \frac{1}{2} \text{ mol.} \]
Therefore 6 mol HCl will be formed.

Mass of 6 mol HCl = \(6 \times 36.5 = 219.0 \text{ g HCl}\)

53. Three oxoacids of nitrogen are
 (i) \(\text{HNO}_2\), Nitrous acid
 (ii) \(\text{HNO}_3\), Nitric acid
 (iii) Hyponitrous acid, \(\text{H}_2\text{N}_2\text{O}_2\)

\[
\begin{align*}
3\text{HNO}_2 \xrightarrow{\text{Disproportionation}} & \text{HNO}_3 + \text{H}_2\text{O} + 2\text{NO}
\end{align*}
\]

54. \(4\text{HNO}_3 + \text{P}_4\text{O}_{10} \rightarrow 4\text{HPO}_3 + 2\text{N}_2\text{O}_5\)

55. (a) Structures (See NCERT textbook for Class XII)
 - White phosphorus is discrete tetrahedral molecule. Thus it has tetrahedral structure with six P–P bonds.
 - Red phosphorus has polymeric structure in which P\(_4\) tetrahedra are linked together through P—P bonds to form chain.

(b) Reactivity
 White phosphorus is much more reactive than red phosphorus. This is because in white phosphorus there is angular strain in P\(_4\) molecules because the bond angles are only of 60°.

56. Dilute and concentrated nitric acid give different oxidation products on reaction with copper metal.
\[
\begin{align*}
3\text{Cu} + 8\text{HNO}_3 \text{(dil.)} \rightarrow & \quad 3\text{Cu(NO}_3)_2 + 2\text{NO} + 4\text{H}_2\text{O} \\
\text{Cu} + 4\text{HNO}_3 \text{(Conc.)} \rightarrow & \quad 3\text{Cu(NO}_3)_2 + 2\text{NO} + 2\text{H}_2\text{O}
\end{align*}
\]

57. \(\text{PCl}_5 + 2\text{Ag} \rightarrow 2\text{AgCl} + \text{PCl}_3\)
 \(\text{AgCl} + 2\text{NH}_3\text{(aq)} \rightarrow [\text{Ag(NH}_3)_2]^+\text{Cl}^-\) (soluble complex)

58. Structure of phosphinic acid (Hypophosphorous acid) is as follows:

\[
\begin{align*}
\text{Reducing behaviour of phosphinic acid is observable in the reaction with silver nitrate given below :}
4\text{AgNO}_3 + 2\text{H}_2\text{O} + \text{H}_3\text{PO}_2 \rightarrow 4\text{Ag} + 4\text{HNO}_3 + \text{H}_3\text{PO}_4
\end{align*}
\]
IV. Matching Type

59. (i) 60. (ii) 61. (i) 62. (ii) 63. (iii)

V. Assertion and Reason Type

64. (iii) 65. (iii) 66. (ii) 67. (i) 68. (i) 69. (i)

VI. Long Answer Type

70. ‘A’ is S_8 ‘B’ is SO_2 gas

$$S_8 + 8O_2 \xrightarrow{\Delta} 8SO_2$$

$$2MnO_4^- + 5SO_2 + 2H_2O \longrightarrow 5 SO_4^{2-} + 4H^+ + 2Mn^{2+}$$

(violet)

$$2Fe^{3+} + SO_2 + 2H_2O \longrightarrow 2Fe^{2+} + SO_4^{2-} + 4H^+$$

71. $Pb(NO_3)_2$ $\xrightarrow{\Delta 673K}$ $2PbO + 4NO_2$

(A)

(Brown colour)

$$2NO_2 \xrightarrow{\text{On cooling}} \xrightarrow{\text{Heating}} N_2O_4$$

(B)

(Colourless solid)

$$2NO + N_2O_4 \xrightarrow{\Delta 250 K} 2 N_2O_3$$

(Blue solid)

(Structure of N_2O_4)

(Structure of N_2O_3)

72. A = NH_4NO_2 B = N_2 C = NH_3 D = HNO_3

(i) $NH_4NO_2 \rightarrow N_2 + 2H_2O$

(ii) $N_2 + 3H_2 \rightarrow 2NH_3$

(iii) $4NH_3 + 5O_2 \rightarrow 4NO + 6H_2O$

$4NO + O_2 \rightarrow 2NO_2$

$3NO_2 + H_2O \rightarrow 2HNO_3 + NO$
I. Multiple Choice Questions (Type-I)

1. Electronic configuration of a transition element X in +3 oxidation state is [Ar]3d\(^5\). What is its atomic number?
 (i) 25
 (ii) 26
 (iii) 27
 (iv) 24

2. The electronic configuration of Cu(II) is 3d\(^9\) whereas that of Cu(I) is 3d\(^{10}\). Which of the following is correct?
 (i) Cu(II) is more stable
 (ii) Cu(II) is less stable
 (iii) Cu(I) and Cu(II) are equally stable
 (iv) Stability of Cu(I) and Cu(II) depends on nature of copper salts

3. Metallic radii of some transition elements are given below. Which of these elements will have highest density?

<table>
<thead>
<tr>
<th>Element</th>
<th>Fe</th>
<th>Co</th>
<th>Ni</th>
<th>Cu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metallic radii/pm</td>
<td>126</td>
<td>125</td>
<td>125</td>
<td>128</td>
</tr>
</tbody>
</table>
 (i) Fe
 (ii) Ni
 (iii) Co
 (iv) Cu
4. Generally transition elements form coloured salts due to the presence of unpaired electrons. Which of the following compounds will be coloured in solid state?
 (i) Ag₂SO₄
 (ii) CuF₂
 (iii) ZnF₂
 (iv) Cu₂Cl₂

5. On addition of small amount of KMnO₄ to concentrated H₂SO₄, a green oily compound is obtained which is highly explosive in nature. Identify the compound from the following.
 (i) Mn₂O₇
 (ii) MnO₂
 (iii) MnSO₄
 (iv) Mn₂O₃

6. The magnetic nature of elements depends on the presence of unpaired electrons. Identify the configuration of transition element, which shows highest magnetic moment.
 (i) 3d⁷
 (ii) 3d⁵
 (iii) 3d⁸
 (iv) 3d²

7. Which of the following oxidation state is common for all lanthanoids?
 (i) +2
 (ii) +3
 (iii) +4
 (iv) +5

8. Which of the following reactions are disproportionation reactions?
 (a) Cu⁺ → Cu²⁺ + Cu
 (b) 3MnO₄⁻ + 4H⁺ → 2MnO₄⁻ + MnO₂ + 2H₂O
 (c) 2KMnO₄ → K₂MnO₄ + MnO₂ + O₂
 (d) 2MnO₄⁻ + 3Mn²⁺ + 2H₂O → 5MnO₂ + 4H⁺
 (i) a, b
 (ii) a, b, c
 (iii) b, c, d
 (iv) a, d
9. When KMnO₄ solution is added to oxalic acid solution, the decolourisation is slow in the beginning but becomes instantaneous after some time because
 (i) CO₂ is formed as the product.
 (ii) Reaction is exothermic.
 (iii) MnO₄⁻ catalyses the reaction.
 (iv) Mn²⁺ acts as autocatalyst.

10. There are 14 elements in actinoid series. Which of the following elements does not belong to this series?
 (i) U
 (ii) Np
 (iii) Tm
 (iv) Fm

11. KMnO₄ acts as an oxidising agent in acidic medium. The number of moles of KMnO₄ that will be needed to react with one mole of sulphide ions in acidic solution is
 (i) \(\frac{2}{5} \)
 (ii) \(\frac{3}{5} \)
 (iii) \(\frac{4}{5} \)
 (iv) \(\frac{1}{5} \)

12. Which of the following is amphoteric oxide?
 Mn₂O₇, CrO₃, Cr₂O₃, CrO, V₂O₅, V₂O₄
 (i) V₂O₅, Cr₂O₃
 (ii) Mn₂O₇, CrO₃
 (iii) CrO, V₂O₅
 (iv) V₂O₅, V₂O₄

13. Gadolinium belongs to 4f series. It’s atomic number is 64. Which of the following is the correct electronic configuration of gadolinium?
 (i) [Xe] 4f⁷5d⁶s²
 (ii) [Xe] 4f⁵5d⁶s²
 (iii) [Xe] 4f⁸6d²
 (iv) [Xe] 4f⁸5s¹
14. Interstitial compounds are formed when small atoms are trapped inside the crystal lattice of metals. Which of the following is not the characteristic property of interstitial compounds?
 (i) They have high melting points in comparison to pure metals.
 (ii) They are very hard.
 (iii) They retain metallic conductivity.
 (iv) They are chemically very reactive.

15. The magnetic moment is associated with its spin angular momentum and orbital angular momentum. Spin only magnetic moment value of Cr$^{3+}$ ion is _________.
 (i) 2.87 B.M.
 (ii) 3.87 B.M.
 (iii) 3.47 B.M.
 (iv) 3.57 B.M.

16. KMnO$_4$ acts as an oxidising agent in alkaline medium. When alkaline KMnO$_4$ is treated with KI, iodide ion is oxidised to ____________.
 (i) I$_2$
 (ii) IO$^-$
 (iii) IO$_3^-$
 (iv) IO$_4^-$

17. Which of the following statements is not correct?
 (i) Copper liberates hydrogen from acids.
 (ii) In its higher oxidation states, manganese forms stable compounds with oxygen and fluorine.
 (iii) Mn$^{3+}$ and Co$^{3+}$ are oxidising agents in aqueous solution.
 (iv) Ti$^{2+}$ and Cr$^{2+}$ are reducing agents in aqueous solution.

18. When acidified K$_2$Cr$_2$O$_7$ solution is added to Sn$^{2+}$ salts then Sn$^{2+}$ changes to
 (i) Sn
 (ii) Sn$^{3+}$
 (iii) Sn$^{4+}$
 (iv) Sn$^+$

19. Highest oxidation state of manganese in fluoride is +4 (MnF$_4$) but highest oxidation state in oxides is +7 (Mn$_2$O$_7$) because ____________.
 (i) fluorine is more electronegative than oxygen.
 (ii) fluorine does not possess d-orbitals.
 (iii) fluorine stabilises lower oxidation state.
 (iv) in covalent compounds fluorine can form single bond only while oxygen forms double bond.
20. Although Zirconium belongs to 4d transition series and Hafnium to 5d transition series even then they show similar physical and chemical properties because__________.
 (i) both belong to d-block.
 (ii) both have same number of electrons.
 (iii) both have similar atomic radius.
 (iv) both belong to the same group of the periodic table.

21. Why is HCl not used to make the medium acidic in oxidation reactions of KMnO₄ in acidic medium?
 (i) Both HCl and KMnO₄ act as oxidising agents.
 (ii) KMnO₄ oxidises HCl into Cl₂ which is also an oxidising agent.
 (iii) KMnO₄ is a weaker oxidising agent than HCl.
 (iv) KMnO₄ acts as a reducing agent in the presence of HCl.

II. Multiple Choice Questions (Type-II)

Note : In the following questions two or more options may be correct.

22. Generally transition elements and their salts are coloured due to the presence of unpaired electrons in metal ions. Which of the following compounds are coloured?
 (i) KMnO₄
 (ii) Ce(SO₄)₂
 (iii) TiCl₄
 (iv) Cu₂Cl₂

23. Transition elements show magnetic moment due to spin and orbital motion of electrons. Which of the following metallic ions have almost same spin only magnetic moment?
 (i) Co²⁺
 (ii) Cr²⁺
 (iii) Mn²⁺
 (iv) Cr³⁺

24. In the form of dichromate, Cr (VI) is a strong oxidising agent in acidic medium but Mo (VI) in MoO₃ and W (VI) in WO₃ are not because __________.
 (i) Cr (VI) is more stable than Mo(VI) and W(VI).
 (ii) Mo(VI) and W(VI) are more stable than Cr(VI).
 (iii) Higher oxidation states of heavier members of group-6 of transition series are more stable.
 (iv) Lower oxidation states of heavier members of group-6 of transition series are more stable.
25. Which of the following actinoids show oxidation states upto +7?
 (i) Am
 (ii) Pu
 (iii) U
 (iv) Np

26. General electronic configuration of actinoids is \((n-2)f^{1-14}(n-1)d^{0-2}ns^2\). Which of the following actinoids have one electron in \(6d\) orbital?
 (i) U (Atomic no. 92)
 (ii) Np (Atomic no. 93)
 (iii) Pu (Atomic no. 94)
 (iv) Am (Atomic no. 95)

27. Which of the following lanthanoids show +2 oxidation state besides the characteristic oxidation state +3 of lanthanoids?
 (i) Ce
 (ii) Eu
 (iii) Yb
 (iv) Ho

28. Which of the following ions show higher spin only magnetic moment value?
 (i) Ti\(^{3+}\)
 (ii) Mn\(^{2+}\)
 (iii) Fe\(^{2+}\)
 (iv) Co\(^{3+}\)

29. Transition elements form binary compounds with halogens. Which of the following elements will form \(MF_3\) type compounds?
 (i) Cr
 (ii) Co
 (iii) Cu
 (iv) Ni

30. Which of the following will not act as oxidising agents?
 (i) CrO\(_3\)
 (ii) MoO\(_3\)
 (iii) WO\(_3\)
 (iv) CrO\(_4^{2-}\)

31. Although +3 is the characteristic oxidation state for lanthanoids but cerium also shows +4 oxidation state because __________.
 (i) it has variable ionisation enthalpy
 (ii) it has a tendency to attain noble gas configuration
 (iii) it has a tendency to attain \(f^0\) configuration
 (iv) it resembles Pb\(^{4+}\)
III. Short Answer Type

32. Why does copper not replace hydrogen from acids?
33. Why E° values for Mn, Ni and Zn are more negative than expected?
34. Why first ionisation enthalpy of Cr is lower than that of Zn?
35. Transition elements show high melting points. Why?
36. When Cu$^{2+}$ ion is treated with KI, a white precipitate is formed. Explain the reaction with the help of chemical equation.
37. Out of Cu$_2$Cl$_2$ and CuCl$_2$, which is more stable and why?
38. When a brown compound of manganese (A) is treated with HCl it gives a gas (B). The gas taken in excess, reacts with NH$_3$ to give an explosive compound (C). Identify compounds A, B and C.
39. Although fluorine is more electronegative than oxygen, but the ability of oxygen to stabilise higher oxidation states exceeds that of fluorine. Why?
40. Although Cr$^{3+}$ and Co$^{2+}$ ions have same number of unpaired electrons but the magnetic moment of Cr$^{3+}$ is 3.87 B.M. and that of Co$^{2+}$ is 4.87 B.M. Why?
41. Ionisation enthalpies of Ce, Pr and Nd are higher than Th, Pa and U. Why?
42. Although Zr belongs to 4d and Hf belongs to 5d transition series but it is quite difficult to separate them. Why?
43. Although +3 oxidation states is the characteristic oxidation state of lanthanoids but cerium shows +4 oxidation state also. Why?
44. Explain why does colour of KMnO$_4$ disappear when oxalic acid is added to its solution in acidic medium.
45. When orange solution containing Cr$_2$O$_7^{2-}$ ion is treated with an alkali, a yellow solution is formed and when H$^+$ ions are added to yellow solution, an orange solution is obtained. Explain why does this happen?
46. A solution of KMnO$_4$ on reduction yields either a colourless solution or a brown precipitate or a green solution depending on pH of the solution. What different stages of the reduction do these represent and how are they carried out?
47. The second and third rows of transition elements resemble each other much more than they resemble the first row. Explain why?
48. E° of Cu is +0.34V while that of Zn is – 0.76V. Explain.
49. The halides of transition elements become more covalent with increasing oxidation state of the metal. Why?
50. While filling up of electrons in the atomic orbitals, the 4s orbital is filled before the 3d orbital but reverse happens during the ionisation of the atom. Explain why?
51. Reactivity of transition elements decreases almost regularly from Sc to Cu. Explain.
IV. Matching Type

Note: Match the items of Column I and Column II in the following questions.

52. Match the catalysts given in Column I with the processes given in Column II.

<table>
<thead>
<tr>
<th>Column I (Catalyst)</th>
<th>Column II (Process)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) Ni in the presence of hydrogen</td>
<td>(a) Zieglar Natta catalyst</td>
</tr>
<tr>
<td>(ii) Cu₂Cl₂</td>
<td>(b) Contact process</td>
</tr>
<tr>
<td>(iii) V₂O₅</td>
<td>(c) Vegetable oil to ghee</td>
</tr>
<tr>
<td>(iv) Finely divided iron</td>
<td>(d) Sandmeyer reaction</td>
</tr>
<tr>
<td>(v) TiCl₄ + Al(CH₃)₃</td>
<td>(e) Haber’s Process</td>
</tr>
<tr>
<td></td>
<td>(f) Decomposition of KClO₃</td>
</tr>
</tbody>
</table>

53. Match the compounds/elements given in Column I with uses given in Column II.

<table>
<thead>
<tr>
<th>Column I (Compound/element)</th>
<th>Column II (Use)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) Lanthanoid oxide</td>
<td>(a) Production of iron alloy</td>
</tr>
<tr>
<td>(ii) Lanthanoid</td>
<td>(b) Television screen</td>
</tr>
<tr>
<td>(iii) Misch metal</td>
<td>(c) Petroleum cracking</td>
</tr>
<tr>
<td>(iv) Magnesium based alloy is constituent of</td>
<td>(d) Lanthanoid metal + iron</td>
</tr>
<tr>
<td>(v) Mixed oxides of lanthanoids are employed</td>
<td>(e) Bullets</td>
</tr>
<tr>
<td></td>
<td>(f) In X-ray screen</td>
</tr>
</tbody>
</table>

54. Match the properties given in Column I with the metals given in Column II.

<table>
<thead>
<tr>
<th>Column I (Property)</th>
<th>Column II (Metal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) An element which can show +8 oxidation state</td>
<td>(a) Mn</td>
</tr>
<tr>
<td>(ii) 3d block element that can show upto +7 oxidation state</td>
<td>(b) Cr</td>
</tr>
<tr>
<td>(iii) 3d block element with highest melting point</td>
<td>(c) Os</td>
</tr>
<tr>
<td></td>
<td>(d) Fe</td>
</tr>
</tbody>
</table>

55. Match the statements given in Column I with the oxidation states given in Column II.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) Oxidation state of Mn in MnO₂ is</td>
<td>(a) + 2</td>
</tr>
<tr>
<td>(ii) Most stable oxidation state of Mn is</td>
<td>(b) + 3</td>
</tr>
<tr>
<td>(iii) Most stable oxidation state of Mn in oxides is</td>
<td>(c) + 4</td>
</tr>
<tr>
<td>(iv) Characteristic oxidation state of lanthanoids is</td>
<td>(d) + 5</td>
</tr>
<tr>
<td></td>
<td>(e) + 7</td>
</tr>
</tbody>
</table>
56. Match the solutions given in Column I and the colours given in Column II.

<table>
<thead>
<tr>
<th>Column I (Aqueous solution of salt)</th>
<th>Column II (Colour)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) FeSO₄·7H₂O</td>
<td>(a) Green</td>
</tr>
<tr>
<td>(ii) NiCl₂·4H₂O</td>
<td>(b) Light pink</td>
</tr>
<tr>
<td>(iii) MnCl₂·4H₂O</td>
<td>(c) Blue</td>
</tr>
<tr>
<td>(iv) CoCl₂·6H₂O</td>
<td>(d) Pale green</td>
</tr>
<tr>
<td>(v) Cu₂Cl₂</td>
<td>(e) Pink</td>
</tr>
<tr>
<td></td>
<td>(f) Colourless</td>
</tr>
</tbody>
</table>

57. Match the property given in Column I with the element given in Column II.

<table>
<thead>
<tr>
<th>Column I (Property)</th>
<th>Column II (Element)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) Lanthanoid which shows +4 oxidation state</td>
<td>(a) Pm</td>
</tr>
<tr>
<td>(ii) Lanthanoid which can show +2 oxidation state</td>
<td>(b) Ce</td>
</tr>
<tr>
<td>(iii) Radioactive lanthanoid</td>
<td>(c) Lu</td>
</tr>
<tr>
<td>(iv) Lanthanoid which has 4f⁷ electronic configuration in +3 oxidation state</td>
<td>(d) Eu</td>
</tr>
<tr>
<td>(v) Lanthanoid which has 4f¹⁴ electronic configuration in +3 oxidation state</td>
<td>(e) Gd</td>
</tr>
<tr>
<td></td>
<td>(f) Dy</td>
</tr>
</tbody>
</table>

58. Match the properties given in Column I with the metals given in Column II.

<table>
<thead>
<tr>
<th>Column I (Property)</th>
<th>Column II (Metal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) Element with highest second ionisation enthalpy</td>
<td>(a) Co</td>
</tr>
<tr>
<td>(ii) Element with highest third ionisation enthalpy</td>
<td>(b) Cr</td>
</tr>
<tr>
<td>(iii) M in M(CO)₆ is</td>
<td>(c) Cu</td>
</tr>
<tr>
<td>(iv) Element with highest heat of atomisation</td>
<td>(d) Zn</td>
</tr>
<tr>
<td></td>
<td>(e) Ni</td>
</tr>
</tbody>
</table>

V. Assertion and Reason Type

Note: In the following questions a statement of assertion followed by a statement of reason is given. Choose the correct answer out of the following choices.

(i) Both assertion and reason are true, and reason is the correct explanation of the assertion.
(ii) Both assertion and reason are true but reason is not the correct explanation of assertion.

(iii) Assertion is not true but reason is true.

(iv) Both assertion and reason are false.

59. **Assertion** : Cu$^{2+}$ iodide is not known.
 Reason : Cu$^{2+}$ oxidises I$^{–}$ to iodine.

60. **Assertion** : Separation of Zr and Hf is difficult.
 Reason : Because Zr and Hf lie in the same group of the periodic table.

61. **Assertion** : Actinoids form relatively less stable complexes as compared to lanthanoids.
 Reason : Actinoids can utilise their 5f orbitals along with 6d orbitals in bonding but lanthanoids do not use their 4f orbital for bonding.

62. **Assertion** : Cu cannot liberate hydrogen from acids.
 Reason : Because it has positive electrode potential.

63. **Assertion** : The highest oxidation state of osmium is +8.
 Reason : Osmium is a 5d-block element.

VI. Long Answer Type

64. Identify A to E and also explain the reactions involved.

65. When a chromite ore (A) is fused with sodium carbonate in free excess of air and the product is dissolved in water, a yellow solution of compound (B) is obtained. After treatment of this yellow solution with sulphuric acid,
compound (C) can be crystallised from the solution. When compound (C) is treated with KCl, orange crystals of compound (D) crystallise out. Identify A to D and also explain the reactions.

66. When an oxide of manganese (A) is fused with KOH in the presence of an oxidising agent and dissolved in water, it gives a dark green solution of compound (B). Compound (B) disproportionates in neutral or acidic solution to give purple compound (C). An alkaline solution of compound (C) oxidises potassium iodide solution to a compound (D) and compound (A) is also formed. Identify compounds A to D and also explain the reactions involved.

67. On the basis of Lanthanoid contraction, explain the following:
 (i) Nature of bonding in La$_2$O$_3$ and Lu$_2$O$_3$.
 (ii) Trends in the stability of oxo salts of lanthanoids from La to Lu.
 (iii) Stability of the complexes of lanthanoids.
 (iv) Radii of 4d and 5d block elements.
 (v) Trends in acidic character of lanthanoid oxides.

68. (a) Answer the following questions:
 (i) Which element of the first transition series has highest second ionisation enthalpy?
 (ii) Which element of the first transition series has highest third ionisation enthalpy?
 (iii) Which element of the first transition series has lowest enthalpy of atomisation?
 (b) Identify the metal and justify your answer.
 (i) Carbonyl M (CO)$_5$
 (ii) MO$_3$F

69. Mention the type of compounds formed when small atoms like H, C and N get trapped inside the crystal lattice of transition metals. Also give physical and chemical characteristics of these compounds.

70. (a) Transition metals can act as catalysts because these can change their oxidation state. How does Fe(III) catalyse the reaction between iodide and persulphate ions?
 (b) Mention any three processes where transition metals act as catalysts.

71. A violet compound of manganese (A) decomposes on heating to liberate oxygen and compounds (B) and (C) of manganese are formed. Compound (C) reacts with KOH in the presence of potassium nitrate to give compound (B). On heating compound (C) with conc. H$_2$SO$_4$ and NaCl, chlorine gas is liberated and a compound (D) of manganese along with other products is formed. Identify compounds A to D and also explain the reactions involved.
ANSWERS

I. Multiple Choice Questions (Type-I)

1. (ii) 2. (i) 3. (iv) 4. (ii) 5. (i) 6. (ii)
7. (ii) 8. (i) 9. (iv) 10. (iii) 11. (i) 12. (i)
13. (i) 14. (iv) 15. (ii) 16. (iii) 17. (i) 18. (iii)
19. (iv) 20. (iii) 21. (ii)

II. Multiple Choice Questions (Type-II)

22. (i), (ii) 23. (i), (iv) 24. (ii), (iii) 25. (ii), (iv)
26. (i), (ii) 27. (ii), (iii) 28. (ii), (iii) 29. (i), (ii) 30. (ii), (iii) 31. (ii), (iii)

III. Short Answer Type

32. Cu shows positive E^0 value.

33. **Hint**: Negative E^0 values for Mn$^{2+}$ and Zn$^{2+}$ are related to stabilities of half filled and fully filled configuration respectively. But for Ni$^{2+}$, E^0 value is related to the highest negative enthalpy of hydration.

34. Ionisation enthalpy of Cr is lower due to stability of d^5 and the value for Zn is higher because its electron comes out from 4s orbital.

35. The high melting points of transition metals are attributed to the involvement of greater number of electrons in the interatomic metallic bonding from (n-1) d-orbitals in addition to ns electrons.

36. **Hint**: Cu$^{2+}$ gets reduced to Cu$^+$

\[
2\text{Cu}^{2+} + 4\text{I}^- \rightarrow \text{Cu}_2\text{I}_2 + \text{I}_2
\]

(white precipitate)

37. **Hint**: CuCl$_2$ is more stable than Cu$_2$Cl$_2$. The stability of Cu$^{2+}$ (aq.) rather than Cu$^+$ (aq.) is due to the much more negative $\Delta_{\text{hyd}}H^\circ$ of Cu$^{2+}$ (aq.) than Cu$^+$ (aq.).

38. A = MnO$_2$ B = Cl$_2$ C = NCl$_3$

\[
\text{MnO}_2 + 4\text{HCl} \rightarrow \text{MnCl}_2 + \text{Cl}_2 + 2\text{H}_2\text{O}
\] (A)

\[
\text{NH}_3 + 3\text{Cl}_2 \rightarrow \text{NCl}_3 + 3\text{HCl}
\] (excess) (C)

39. **Hint**: It is due to the ability of oxygen to form multiple bonds to metals.

40. **Hint**: Due to symmetrical electronic configuration there is no orbital contribution in Cr$^{3+}$ ion. However appreciable orbital contribution takes place in Co$^{2+}$ ion.
41. **Hint**: It is because in the beginning, when 5f orbitals begin to be occupied, they will penetrate less into the inner core of electrons. The 5f electrons will therefore be more effectively shielded from the nuclear charge than 4f electrons of the corresponding lanthanoids. Therefore outer electrons are less firmly held and they are available for bonding in the actinoids.

42. **Hint**: Due to lanthanoid contraction, they have almost same size (Zr, 160 pm) and (Hf, 159 pm).

43. It is because after losing one more electron Ce acquires stable 4f⁰ electronic configuration.

44. KMnO₄ acts as oxidising agent. It oxidises oxalic acid to CO₂ and itself changes to Mn²⁺ ion which is colourless.

\[
5C_2O_4^{2-} + 2MnO_4^- + 16H^+ \rightarrow 2Mn^{2+} + 8H_2O + 10CO_2
\]
(Colourless)

45. \[
Cr_2O_7^{2-} \xrightarrow{OH^-/H^+} CrO_4^{2-}
\]
(Dichromate) (Chromate)
(Orange) (Yellow)

46. Oxidising behaviour of KMnO₄ depends on pH of the solution.

In acidic medium (pH < 7)

\[
MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O
\]
(Colourless)

In alkaline medium (pH > 7)

\[
MnO_4^- + e^- \rightarrow MnO_4^{2-}
\]
(Green)

In neutral medium (pH = 7)

\[
MnO_4^- + 2H_2O + 3e^- \rightarrow MnO_2 + 4OH^-
\]
(Brown precipitate)

47. Due to lanthanoid contraction, the atomic radii of the second and third row transition elements is almost same. So they resemble each other much more as compared to first row elements.

48. **Hint**: High ionisation enthalpy to transform Cu(s) to Cu²⁺ (aq) is not balanced by its hydration enthalpy. However, in case of Zn after removal of electrons from 4s-orbital, stable 3d¹⁰ configuration is acquired.

49. As the oxidation state increases, size of the ion of transition element decreases. As per Fajan’s rule, as the size of metal ion decreases, covalent character of the bond formed increases.

50. \[n + 1 \text{ rule: For } 3d = n + 1 = 5 \]
\[4s = n + 1 = 4 \]
So electron will enter in 4s orbital.

Ionisation enthalpy is responsible for the ionisation of atom. 4s electrons are loosely held by the nucleus. So electrons are removed from 4s orbital prior to 3d.

51. **Hint**: It is due to regular increase in ionisation enthalpy.
IV. Matching Type

52. (i) → (c) (ii) → (d) (iii) → (b) (iv) → (e) (v) → (a)
53. (i) → (b) (ii) → (a) (iii) → (d) (iv) → (e) (v) → (c)
54. (i) → (c) (ii) → (a) (iii) → (b)
55. (i) → (c) (ii) → (a) (iii) → (e) (iv) → (b)
56. (i) → (d) (ii) → (a) (iii) → (b) (iv) → (e) (v) → (f)
57. (i) → (b) (ii) → (d) (iii) → (a) (iv) → (e) (v) → (c)
58. (i) → (c) (ii) → (d) (iii) → (b) (iv) → (a)

V. Assertion and Reason Type

59. (i) 60. (ii) 61. (iii) 62. (i) 63. (ii)

VI. Long Answer Type

64. A = Cu B = Cu(NO₃)₂ C = [Cu(NH₃)₄]²⁺ D = CO₂
E = CaCO₃ F = Cu₂[Fe(CN)₆] G = Ca(HCO₃)₂
CuCO₃ → CuO + CO₂
CuO + CuS → Cu + SO₂
(A)
Cu + 4HNO₃ (Conc) → Cu(NO₃)₂ + 2NO + 2H₂O
(B)
Cu²⁺ + NH₃ → [Cu(NH₃)₄]²⁺
(C)
Ca(OH)₂ + CO₂ → CaCO₃ + H₂O
(D)
CaCO₃ + H₂O + CO₂ → Ca(HCO₃)₂
(E)

65. A = FeCr₂O₄ B = Na₂CrO₄ C = Na₂Cr₂O₇·2H₂O D = K₂Cr₂O₇
4FeCr₂O₄ + 8Na₂CO₃ + 7O₂ → 8Na₂CrO₄ + 2Fe₂O₃ + 8CO₂
(A)
2NaCrO₄ + 2H⁺ → Na₂Cr₂O₇ + 2Na⁺ + H₂O
(B)
Na₂Cr₂O₇ + 2KCl → K₂Cr₂O₇ + 2NaCl
(C)

66. A = MnO₂ B = K₂MnO₄ C = KMnO₄ D = KIO₃
2 MnO₂ + 4KOH + O₂ → 2K₂MnO₄ + 2H₂O
(A)
3MnO₄²⁻ + 4H⁺ → 2MnO₄⁻ + MnO₂ + 2H₂O
(C)
2MnO₄⁻ + H₂O + KI → 2MnO₂ + 2OH⁻ + KIO₃
(A)
67. **Hint** : (i) As the size decreases covalent character increases. Therefore \(\text{La}_2\text{O}_3 \) is more ionic and \(\text{Lu}_2\text{O}_3 \) is more covalent.
 (ii) As the size decreases from La to Lu, stability of oxosalts also decreases.
 (iii) Stability of complexes increases as the size of lanthanoids decreases.
 (iv) Radii of 4\(d\) and 5\(d\) block elements will be almost same.
 (v) Acidic character of oxides increases from La to Lu.

68. (a) (i) Cu, because the electronic configuration of Cu is \(3d^{10}4s^1\). So second electron needs to be removed from completely filled \(d\)-orbital.
 (ii) Zn [**Hint** : As above]
 (iii) Zn [**Hint** : No unpaired electron for metallic bonding]

(b) (i) \(\text{Fe(CO)}_5\) [**Hint** : EAN rule]
 (ii) \(\text{MnO}_3\) \(\text{F}^+\) [**Hint** : Mn shows +7 oxidation state; \(d\)-electrons are not involved in bonding.]

69. **Interstitial compounds**.
 Characteristic properties :
 (i) High melting points, higher than those of pure metals.
 (ii) Very hard.
 (iii) Retain metallic conductivity.
 (iv) Chemically inert.

70. (a) Reaction between iodide and persulphate ions is :
\[
2I^- + S_2O_8^{2-} \rightarrow \text{Fe(III)} + I_2 + 2SO_4^{2-}
\]
Role of Fe (III) ions :
\[
2\text{Fe}^{3+} + 2I^- \rightarrow 2\text{Fe}^{2+} + I_2
\]
\[
2\text{Fe}^{2+} + S_2O_8^{2-} \rightarrow 2\text{Fe}^{3+} + 2SO_4^{2-}
\]
(b) (i) Vanadium (V) oxide in contact process for oxidation of \(\text{SO}_2\) to \(\text{SO}_3\).
 (ii) Finely divided iron in Haber’s process in conversion of \(\text{N}_2\) and \(\text{H}_2\) to \(\text{NH}_3\).
 (iii) \(\text{MnO}_2\) in preparation of oxygen from \(\text{KClO}_3\).

71. \(A = \text{KMnO}_4\) \(B = \text{K}_2\text{MnO}_4\) \(C = \text{MnO}_2\) \(D = \text{MnCl}_2\)
\[
\text{KMnO}_4 \rightarrow A \rightarrow \text{K}_2\text{MnO}_4 + \text{MnO}_2 + \text{O}_2
\]
(A) \(\rightarrow\) (B) \(\rightarrow\) (C)
\[
\text{MnO}_2 + \text{KOH} + \text{O}_2 \rightarrow 2\text{K}_2\text{MnO}_4 + 2\text{H}_2\text{O}
\]
\[
\text{MnO}_2 + 4\text{NaCl} + 4\text{H}_2\text{SO}_4 \rightarrow \text{MnCl}_2 + 2\text{NaHSO}_4 + 2\text{H}_2\text{O} + \text{Cl}_2
\]
(D)
1. Which of the following complexes formed by \(\text{Cu}^{2+} \) ions is most stable?

(i) \(\text{Cu}^{2+} + 4\text{NH}_3 \Leftrightarrow [\text{Cu(NH}_3]_4^{2+}, \quad \log K = 11.6 \)

(ii) \(\text{Cu}^{2+} + 4\text{CN}^- \Leftrightarrow [\text{Cu(CN)}_4]^{2-}, \quad \log K = 27.3 \)

(iii) \(\text{Cu}^{2+} + 2\text{en} \Leftrightarrow [\text{Cu(en)}_2]^{2+}, \quad \log K = 15.4 \)

(iv) \(\text{Cu}^{2+} + 4\text{H}_2\text{O} \Leftrightarrow [\text{Cu(H}_2\text{O)}_4]^{2+}, \quad \log K = 8.9 \)

2. The colour of the coordination compounds depends on the crystal field splitting. What will be the correct order of absorption of wavelength of light in the visible region, for the complexes, \([\text{Co(NH}_3]_6]^{3+}, [\text{Co(CN)}_6]^{3-}, [\text{Co(H}_2\text{O)}_6]^{3+}\)

(i) \([\text{Co(CN)}_6]^{3-} > [\text{Co(NH}_3]_6]^{3+} > [\text{Co(H}_2\text{O)}_6]^{3+}\)

(ii) \([\text{Co(NH}_3]_6]^{3+} > [\text{Co(H}_2\text{O)}_6]^{3+} > [\text{Co(CN)}_6]^{3-}\)

(iii) \([\text{Co(H}_2\text{O)}_6]^{3+} > [\text{Co(NH}_3]_6]^{3+} > [\text{Co(CN)}_6]^{3-}\)

(iv) \([\text{Co(CN)}_6]^{3-} > [\text{Co(NH}_3]_6]^{3+} > [\text{Co(H}_2\text{O)}_6]^{3+}\)

3. When 0.1 mol \(\text{CoCl}_3(\text{NH}_3)_5 \) is treated with excess of \(\text{AgNO}_3 \), 0.2 mol of \(\text{AgCl} \) are obtained. The conductivity of solution will correspond to

(i) 1:3 electrolyte

(ii) 1:2 electrolyte

(iii) 1:1 electrolyte

(iv) 3:1 electrolyte
4. When 1 mol CrCl$_3$\textsubscript{6}H$_2$O is treated with excess of AgNO$_3$, 3 mol of AgCl are obtained. The formula of the complex is:

(i) [CrCl$_3$(H$_2$O)$_3$]Cl\textsubscript{3}\cdot3H$_2$O
(ii) [CrCl$_2$(H$_2$O)$_4$]Cl\textsubscript{3}2H$_2$O
(iii) [CrCl(H$_2$O)$_5$]Cl$_2$H$_2$O
(iv) [Cr(H$_2$O)$_6$]Cl$_3$

5. The correct IUPAC name of [Pt(NH$_3$)$_2$Cl$_2$] is

(i) Diamminedichloridoplatinum (II)
(ii) Diamminedichloridoplatinum (IV)
(iii) Diamminedichloridoplatinum (0)
(iv) Dichloridodiammineplatinum (IV)

6. The stabilisation of coordination compounds due to chelation is called the chelate effect. Which of the following is the most stable complex species?

(i) [Fe(CO)$_5$]
(ii) [Fe(CN)$_6$]$^{3-}$
(iii) [Fe(C$_2$O$_4$)$_3$]$^{3-}$
(iv) [Fe(H$_2$O)$_6$]$^{3+}$

7. Indicate the complex ion which shows geometrical isomerism.

(i) [Cr(H$_2$O)$_4$Cl$_3$]$^+$
(ii) [Pt(NH$_3$)$_3$Cl]
(iii) [Co(NH$_3$)$_6$]$^{3+}$
(iv) [Co(CN)$_5$(NC)]$^{3-}$

8. The CFSE for octahedral [CoCl$_6$]$^{4-}$ is 18,000 cm$^{-1}$. The CFSE for tetrahedral [CoCl$_4$]$^{2-}$ will be

(i) 18,000 cm$^{-1}$
(ii) 16,000 cm$^{-1}$
(iii) 8,000 cm$^{-1}$
(iv) 20,000 cm$^{-1}$

9. Due to the presence of ambidentate ligands coordination compounds show isomerism. Palladium complexes of the type [Pd(C$_6$H$_5$)$_2$(SCN)$_2$] and [Pd(C$_6$H$_5$)$_2$(NCS)$_2$] are

(i) linkage isomers
(ii) coordination isomers
(iii) ionisation isomers
(iv) geometrical isomers

10. The compounds [Co(SO$_4$)(NH$_3$)$_2$]Br and [Co(SO$_4$)(NH$_3$)$_2$]Cl represent

(i) linkage isomerism
(ii) ionisation isomerism
(iii) coordination isomerism
(iv) no isomerism

11. A chelating agent has two or more than two donor atoms to bind to a single metal ion. Which of the following is not a chelating agent?
 (i) thiosulphato
 (ii) oxalato
 (iii) glycinato
 (iv) ethane-1,2-diamine

12. Which of the following species is not expected to be a ligand?
 (i) NO
 (ii) NH$_4^+$
 (iii) NH$_2$CH$_2$CH$_2$NH$_2$
 (iv) CO

13. What kind of isomerism exists between [Cr(H$_2$O)$_6$]Cl$_3$ (violet) and [Cr(H$_2$O)$_5$Cl]Cl$_2$H$_2$O (greyish-green)?
 (i) linkage isomerism
 (ii) solvate isomerism
 (iii) ionisation isomerism
 (iv) coordination isomerism

14. IUPAC name of [Pt(NH$_3$)$_2$Cl(NO$_2$)] is :
 (i) Platinum diaminechloronitrite
 (ii) Chloronitrito-N-ammineplatinum (II)
 (iii) Diamminechloridonitrito-N-platinum (II)
 (iv) Diamminechloronitrito-N-platinate (II)

II. Multiple Choice Questions (Type-II)

Note: In the following questions two or more options may be correct.

15. Atomic number of Mn, Fe and Co are 25, 26 and 27 respectively. Which of the following inner orbital octahedral complex ions are diamagnetic?
 (i) [Co(NH$_3$)$_6$]$^{3+}$
 (ii) [Mn(CN)$_6$]$^{3-}$
 (iii) [Fe(CN)$_6$]$^{3-}$
 (iv) [Fe(CN)$_6$]$^{3-}$

16. Atomic number of Mn, Fe, Co and Ni are 25, 26, 27 and 28 respectively. Which of the following outer orbital octahedral complexes have same number of unpaired electrons?
(i) \([\text{MnCl}_6]^{3-}\)
(ii) \([\text{FeF}_6]^{3-}\)
(iii) \([\text{CoF}_6]^{3-}\)
(iv) \([\text{Ni(NH}_3)_6]^{2+}\)

17. Which of the following options are correct for \([\text{Fe(CN)}_6]^{3-}\) complex?
 (i) \(d^5sp^3\) hybridisation
 (ii) \(sp^3d^6\) hybridisation
 (iii) paramagnetic
 (iv) diamagnetic

18. An aqueous pink solution of cobalt(II) chloride changes to deep blue on addition of excess of HCl. This is because__________.
 (i) \([\text{Co(H}_2\text{O)}_6]^{2+}\) is transformed into \([\text{CoCl}_4]^{2-}\)
 (ii) \([\text{Co(H}_2\text{O)}_6]^{2+}\) is transformed into \([\text{CoCl}_4]^{4-}\)
 (iii) tetrahedral complexes have smaller crystal field splitting than octahedral complexes.
 (iv) tetrahedral complexes have larger crystal field splitting than octahedral complex.

19. Which of the following complexes are homoleptic?
 (i) \([\text{Co(NH}_3)_6]^{3+}\)
 (ii) \([\text{Co(NH}_3)_4\text{Cl}_2]^{+}\)
 (iii) \([\text{Ni(CN)}_4]^{2-}\)
 (iv) \([\text{Ni(NH}_3)_4\text{Cl}_2]^{-}\)

20. Which of the following complexes are heteroleptic?
 (i) \([\text{Cr(NH}_3)_6]^{3+}\)
 (ii) \([\text{Fe(NH}_3)_4\text{Cl}_2]^{+}\)
 (iii) \([\text{Mn(CN)}_4]^{+}\)
 (iv) \([\text{Co(NH}_3)_4\text{Cl}_2]^{-}\)

21. Identify the optically active compounds from the following:
 (i) \([\text{Co(en)}_3]^{3+}\)
 (ii) *trans*– \([\text{Co(en)}_2\text{Cl}_2]^{+}\)
 (iii) *cis*– \([\text{Co(en)}_2\text{Cl}_2]^{+}\)
 (iv) \([\text{Cr(NH}_3)_6\text{Cl}]^{-}\)

22. Identify the correct statements for the behaviour of ethane-1, 2-diamine as a ligand.
 (i) It is a neutral ligand.
 (ii) It is a didentate ligand.
(iii) It is a chelating ligand.
(iv) It is a unidentate ligand.

23. Which of the following complexes show linkage isomerism?
 (i) \([\text{Co(NH}_3\text{)}_5\text{NO}_2]^{2+}\)
 (ii) \([\text{Co(H}_2\text{O)}_5\text{CO}]^{3+}\)
 (iii) \([\text{Cr(NH}_3\text{)}_5\text{SCN}]^{2+}\)
 (iv) \([\text{Fe(en)}_2\text{Cl}]^{+}\)

III. Short Answer Type

24. Arrange the following complexes in the increasing order of conductivity of their solution: \([\text{Co(NH}_3\text{)}_3\text{Cl}]^3\), \([\text{Co(NH}_3\text{)}_4\text{Cl}]^2\), \([\text{Co(NH}_3\text{)}_6\text{Cl}]^3\), \([\text{Cr(NH}_3\text{)}_5\text{Cl}]^2\)

25. A coordination compound \(\text{CrCl}_3\cdot4\text{H}_2\text{O}\) precipitates silver chloride when treated with silver nitrate. The molar conductance of its solution corresponds to a total of two ions. Write structural formula of the compound and name it.

26. A complex of the type \([\text{M(AA)}_2\text{X}_2]^{3+}\) is known to be optically active. What does this indicate about the structure of the complex? Give one example of such complex.

27. Magnetic moment of \([\text{MnCl}_4]^{2-}\) is 5.92 BM. Explain giving reason.

28. On the basis of crystal field theory explain why Co(III) forms paramagnetic octahedral complex with weak field ligands whereas it forms diamagnetic octahedral complex with strong field ligands.

29. Why are low spin tetrahedral complexes not formed?

30. Give the electronic configuration of the following complexes on the basis of Crystal Field Splitting theory.
 \([\text{CoF}_6]^{3-}\), \([\text{Fe(CN)}_6]^{4-}\) and \([\text{Cu(NH}_3\text{)}_4]^{2+}\).

31. Explain why \([\text{Fe(H}_2\text{O)}_6]^{3+}\) has magnetic moment value of 5.92 BM whereas \([\text{Fe(CN)}_6]^{3-}\) has a value of only 1.74 BM.

32. Arrange following complex ions in increasing order of crystal field splitting energy \(\Delta_o\):
 \([\text{Cr(Cl)}_6]^{3-}\), \([\text{Cr(CN)}_6]^{3-}\), \([\text{Cr(NH}_3\text{)}_6]^{3+}\).

33. Why do compounds having similar geometry have different magnetic moment?

34. \(\text{CuSO}_4\cdot5\text{H}_2\text{O}\) is blue in colour while \(\text{CuSO}_4\) is colourless. Why?

35. Name the type of isomerism when ambidentate ligands are attached to central metal ion. Give two examples of ambidentate ligands.
IV. Matching Type

Note: In the following questions match the items given in Columns I and II.

36. Match the complex ions given in Column I with the colours given in Column II and assign the correct code:

<table>
<thead>
<tr>
<th>Column I (Complex ion)</th>
<th>Column II (Colour)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. ([\text{Co(NH}_3\text{)}_6]^{3+})</td>
<td>1. Violet</td>
</tr>
<tr>
<td>B. ([\text{Ti(H}_2\text{O)}_6]^{3+})</td>
<td>2. Green</td>
</tr>
<tr>
<td>C. ([\text{Ni(H}_2\text{O)}_6]^{2+})</td>
<td>3. Pale blue</td>
</tr>
<tr>
<td>D. ((\text{Ni (H}_2\text{O)}_4 \text{(en})^{2+}(\text{aq}))</td>
<td>4. Yellowish orange</td>
</tr>
<tr>
<td></td>
<td>5. Blue</td>
</tr>
</tbody>
</table>

Code:

(i) A (1) B (2) C (4) D (5)
(ii) A (4) B (3) C (2) D (1)
(iii) A (3) B (2) C (4) D (1)
(iv) A (4) B (1) C (2) D (3)

37. Match the coordination compounds given in Column I with the central metal atoms given in Column II and assign the correct code:

<table>
<thead>
<tr>
<th>Column I (Coordination Compound)</th>
<th>Column II (Central metal atom)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Chlorophyll</td>
<td>1. rhodium</td>
</tr>
<tr>
<td>B. Blood pigment</td>
<td>2. cobalt</td>
</tr>
<tr>
<td>C. Wilkinson catalyst</td>
<td>3. calcium</td>
</tr>
<tr>
<td>D. Vitamin B\textsubscript{12}</td>
<td>4. iron</td>
</tr>
<tr>
<td></td>
<td>5. magnesium</td>
</tr>
</tbody>
</table>

Code:

(i) A (5) B (4) C (1) D (2)
(ii) A (3) B (4) C (5) D (1)
(iii) A (4) B (3) C (2) D (1)
(iv) A (3) B (4) C (1) D (2)

38. Match the complex ions given in Column I with the hybridisation and number of unpaired electrons given in Column II and assign the correct code:

<table>
<thead>
<tr>
<th>Column I (Complex ion)</th>
<th>Column II (Hybridisation, number of unpaired electrons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. ([\text{Cr(H}_2\text{O)}_6]^{3+})</td>
<td>1. (dsp^2, 1)</td>
</tr>
<tr>
<td>B. ([\text{Co(CN)}_6]^{3-})</td>
<td>2. (sp^3d^2, 5)</td>
</tr>
<tr>
<td>C. ([\text{Ni(NH}_3\text{)}_6]^{2+})</td>
<td>3. (d^6sp^3, 3)</td>
</tr>
<tr>
<td>D. ([\text{MnF}_6]^{4-})</td>
<td>4. (sp^3, 4)</td>
</tr>
<tr>
<td></td>
<td>5. (sp^3d^2, 2)</td>
</tr>
</tbody>
</table>

Code:

(i) A (3) B (1) C (5) D (2)
39. Match the complex species given in Column I with the possible isomerism given in Column II and assign the correct code:

<table>
<thead>
<tr>
<th>Column I (Complex species)</th>
<th>Column II (Isomerism)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. ([\text{Co(NH}_3\text{)}_4\text{Cl}_2]^{3+})</td>
<td>1. optical</td>
</tr>
<tr>
<td>B. (\text{cis-[Co(en)_2Cl}_2]^{3+})</td>
<td>2. ionisation</td>
</tr>
<tr>
<td>C. ([\text{Co(NH}_3\text{)}_5\text{(NO}_2\text{)}]\text{Cl}_2)</td>
<td>3. coordination</td>
</tr>
<tr>
<td>D. ([\text{Co(NH}_3\text{)}_6]\text{[Cr(CN)}_6\text{]})</td>
<td>4. geometrical</td>
</tr>
<tr>
<td></td>
<td>5. linkage</td>
</tr>
</tbody>
</table>

Code:

(i) A (1) B (2) C (4) D (5)
(ii) A (4) B (3) C (2) D (1)
(iii) A (4) B (1) C (5) D (3)
(iv) A (4) B (1) C (2) D (3)

40. Match the compounds given in Column I with the oxidation state of cobalt present in it (given in Column II) and assign the correct code.

<table>
<thead>
<tr>
<th>Column I (Compound)</th>
<th>Column II (Oxidation state of Co)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. ([\text{Co(NCS)}(\text{NH}_3)_3\text{]}(\text{SO}_3\text{)}))</td>
<td>1. +4</td>
</tr>
<tr>
<td>B. ([\text{Co(NH}_3\text{)}_4\text{Cl}_2]\text{SO}_4)</td>
<td>2. 0</td>
</tr>
<tr>
<td>C. (\text{Na}_4[\text{Co(S}_2\text{O}_3\text{)}_3\text{]})</td>
<td>3. +1</td>
</tr>
<tr>
<td>D. ([\text{Co}_2(\text{CO})_8])</td>
<td>4. +2</td>
</tr>
<tr>
<td></td>
<td>5. +3</td>
</tr>
</tbody>
</table>

Code:

(i) A (1) B (2) C (4) D (5)
(ii) A (4) B (3) C (2) D (1)
(iii) A (5) B (1) C (4) D (2)
(iv) A (4) B (1) C (2) D (3)

V. Assertion and Reason Type

Note: In the following questions a statement of assertion followed by a statement of reason is given. Choose the correct answer out of the following choices.

(i) Assertion and reason both are true, reason is correct explanation of assertion.

(ii) Assertion and reason both are true but reason is not the correct explanation of assertion.
(iii) Assertion is true, reason is false.
(iv) Assertion is false, reason is true.

41. **Assertion** : Toxic metal ions are removed by the chelating ligands.
 Reason : Chelate complexes tend to be more stable.

42. **Assertion** : [Cr(H₂O)₆]Cl₂ and [Fe(H₂O)₆]Cl₂ are reducing in nature.
 Reason : Unpaired electrons are present in their d-orbitals.

43. **Assertion** : Linkage isomerism arises in coordination compounds containing ambidentate ligand.
 Reason : Ambidentate ligand has two different donor atoms.

44. **Assertion** : Complexes of MX₆ and MX₅L type (X and L are unidentate) do not show geometrical isomerism.
 Reason : Geometrical isomerism is not shown by complexes of coordination number 6.

45. **Assertion** : ([Fe(CN)₆]³⁻ ion shows magnetic moment corresponding to two unpaired electrons.
 Reason : Because it has d⁸sp³ type hybridisation.

VI. Long Answer Type

46. Using crystal field theory, draw energy level diagram, write electronic configuration of the central metal atom/ion and determine the magnetic moment value in the following:
 (i) [CoF₆]³⁻, [Co(H₂O)₆]²⁺, [Co(CN)₆]³⁻
 (ii) [FeF₆]³⁻, [Fe(H₂O)₆]²⁺, [Fe(CN)₆]⁴⁻

47. Using valence bond theory, explain the following in relation to the complexes given below:
 [Mn(CN)₆]³⁻, [Co(NH₃)₆]³⁺, [Cr(H₂O)₆]³⁺, [FeCl₆]⁴⁻
 (i) Type of hybridisation.
 (ii) Inner or outer orbital complex.
 (iii) Magnetic behaviour.
 (iv) Spin only magnetic moment value.

48. CoSO₄Cl₂.5NH₃ exists in two isomeric forms ‘A’ and ‘B’. Isomer ‘A’ reacts with AgNO₃ to give white precipitate, but does not react with BaCl₂. Isomer ‘B’ gives white precipitate with BaCl₂ but does not react with AgNO₃. Answer the following questions.
 (i) Identify ‘A’ and ‘B’ and write their structural formulas.
 (ii) Name the type of isomerism involved.
 (iii) Give the IUPAC name of ‘A’ and ‘B’.

49. What is the relationship between observed colour of the complex and the wavelength of light absorbed by the complex?

50. Why are different colours observed in octahedral and tetrahedral complexes for the same metal and same ligands?
ANSWERS

I. Multiple Choice Questions (Type-I)

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>(ii)</td>
<td>2.</td>
<td>(iii)</td>
<td>3.</td>
<td>(ii)</td>
</tr>
<tr>
<td>4.</td>
<td>(iv)</td>
<td>5.</td>
<td>(i)</td>
<td>6.</td>
<td>(iii)</td>
</tr>
<tr>
<td>7.</td>
<td>(i)</td>
<td>8.</td>
<td>(iii)</td>
<td>9.</td>
<td>(i)</td>
</tr>
<tr>
<td>10.</td>
<td>(iv)</td>
<td>11.</td>
<td>(i)</td>
<td>12.</td>
<td>(ii)</td>
</tr>
<tr>
<td>13.</td>
<td>(ii)</td>
<td>14.</td>
<td>(iii)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

II. Multiple Choice Questions (Type-II)

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>15.</td>
<td>(i), (iii)</td>
<td>16.</td>
<td>(i), (iii)</td>
<td>17.</td>
<td>(i), (iii)</td>
</tr>
<tr>
<td>18.</td>
<td>(ii), (iii)</td>
<td>19.</td>
<td>(i), (iii)</td>
<td>20.</td>
<td>(ii), (iv)</td>
</tr>
<tr>
<td>21.</td>
<td>(i), (iii)</td>
<td>22.</td>
<td>(i), (ii), (iii)</td>
<td>23.</td>
<td>(i), (iii)</td>
</tr>
</tbody>
</table>

III. Short Answer Type

24. $[\text{Co(NH}_3)_3\text{Cl}_3]^- < [\text{Cr(NH}_3)_5\text{Cl}]^- < [\text{Co(NH}_3)_5\text{Cl}]_2^- < [\text{Co(NH}_3)_6\text{Cl}_3]^-$

25. $[\text{Co(H}_2\text{O})_4\text{Cl}_2\text{Cl}]$ (tetraaquadichloridocobalt(III) chloride)

26. An optically active complex of the type $[\text{M(AA)}_2\text{X}_2]^{n+}$ indicates cis-octahedral structure, e.g. cis-$[\text{Pt(en)}_2\text{Cl}_2]^{2+}$ or cis-$[\text{Cr(en)}_2\text{Cl}_3]^+$

27. The magnetic moment of 5.92 BM corresponds to the presence of five unpaired electrons in the d-orbitals of Mn$^{2+}$ ion. As a result the hybridisation involved is sp^3 rather than dsp^2. Thus tetrahedral structure of $[\text{MnCl}_4]^{2-}$ complex will show 5.92 BM magnetic moment value.

28. With weak field ligands; $\Delta_0 < p$, the electronic configuration of Co (III) will be $t^4_2e^2_g$ and it has 4 unpaired electrons and is paramagnetic. With strong field ligands, $\Delta_0 > p$, the electronic configuration will be $t^6_2e^0_g$. It has no unpaired electrons and is diamagnetic.

29. Because for tetrahedral complexes, the crystal field stabilisation energy is lower than pairing energy.

30. $[\text{CoF}_6]^{3-}$: $\text{Co}^{3+}(d^7) t^4_{2g} e^2_{g}$
 $[\text{Fe(CN)}_6]^{4-}$: $\text{Fe}^{2+}(d^6) t^6_{2g} e^0_{g}$
 $[\text{Cu(NH}_3)_6]^{2+}$: $\text{Cu}^{2+}(d^9) t^6_{2g} e^3_{g}$

31. $[\text{Fe(CN)}_6]^{3-}$ involves d^5sp^1 hybridisation with one unpaired electron and $[\text{Fe(H}_2\text{O})_6]^{3-}$ involves sp^3d^5 hybridisation with five unpaired electrons. This difference is due to the presence of strong ligand CN$^-$ and weak ligand H$_2$O in these complexes.

32. Crystal field splitting energy increases in the order $[\text{Cr(Cl)}_6]^{3-} < [\text{Cr(NH}_3)_5\text{Cl}]^{3-} < [\text{Cr(CN)}_6]^{3-}$.
33. It is due to the presence of weak and strong ligands in complexes, if CFSE is high, the complex will show low value of magnetic moment and vice versa, e.g. \([\text{CoF}_6]^{3-}\) and \([\text{Co(NH}_3)_6]^{3+}\), the former is paramagnetic and the latter is diamagnetic.

34. In \(\text{CuSO}_4\cdot5\text{H}_2\text{O}\), water acts as ligand as a result it causes crystal field splitting. Hence d—d transition is possible in \(\text{CuSO}_4\cdot5\text{H}_2\text{O}\) and shows colour. In the anhydrous \(\text{CuSO}_4\) due to the absence of water (ligand), crystal field splitting is not possible and hence no colour.

35. Linkage isomerism

Examples: (i) \(\text{M} \rightleftharpoons \text{N} \rightleftharpoons \text{O}\) nitrito — O

(ii) \(\text{Me} \rightleftharpoons \text{SCN} \rightleftharpoons \text{Me} \rightleftharpoons \text{NCS}\) thiocyanato isothiocyanato

IV. Matching Type

36. (ii) 37. (i) 38. (ii) 39. (iv) 40. (i)

V. Assertion and Reason Type

41. (i) 42. (ii) 43. (i) 44. (ii) 45. (iv)

VI. Long Answer Type

\[
\sqrt{n(n+2)}
\]

46. (i) \(\text{[CoF}_6]^{3-}\) i.e. \(t^4{e^2}\)

\(\text{Co}^{3+} = 3d^6\)

Number of unpaired electrons = 4

\[
= \sqrt{4(4+2)} = \sqrt{24} = 4.9 \text{ BM}
\]
\[[\text{Co(H}_2\text{O})_4\text{]}^{2+} \quad \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{array} \quad \text{i.e. } t_{2g}^3 e_{\epsilon}^2 \]

Co\(^{2+}\) = 3\(d^7\)

Number of unpaired electrons = 3

\[\sqrt{3(3+2)} = \sqrt{15} = 3.87 \text{ BM} \]

\[[\text{Co(CN)}_4]^{3-} \quad \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{array} \quad \text{i.e. } t_{2g}^3 e_{\epsilon}^2 \]

Co\(^{3-}\) = 3\(d^6\)

No unpaired electrons so diamagnetic

(ii) \[\text{FeF}_3 \quad \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{array} \quad \text{i.e. } t_{2g}^3 e_{\epsilon}^2 \]

Fe\(^{3+}\) = 3\(d^5\)

Number of unpaired electrons = 5

\[\sqrt{5(5+2)} = \sqrt{35} = 5.92 \text{ BM} \]

\[[\text{Fe(H}_2\text{O})_4\text{]}^{2+} \quad \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{array} \quad \text{i.e. } t_{2g}^3 e_{\epsilon}^2 \]

Fe\(^{2+}\) = 3\(d^6\)

Number of unpaired electrons = 4

\[\sqrt{4(4+2)} = \sqrt{24} = 4.9 \text{ BM} \]
\[\text{[Fe(CN)]}^{4-}\]
\[\text{Fe}^{2+} = 3d^6\]
Since CN\(^-\) is strong field ligand all the electrons get paired.

\[\text{i.e. } t_{2g}^6 e_{\tilde{g}}^0\]

No unpaired electrons so diamagnetic

47. \[\text{[Mn(CN)]}^{3-}\]
\[\text{Mn}^{3+} = 3d^4\]
\[
\begin{array}{c}
3d \\
\hline
\text{4s} & \text{4p} \\
\end{array}
\]
\[d^2sp^3\]
(i) \(d^2sp^3\)
(ii) Inner orbital complex
(iii) Paramagnetic
(iv) \(\sqrt{2(2+2)} = \sqrt{8} = 2.87\) BM

\[\text{[Co(NH}_3\text{)]}^{3+}\]
\[\text{Co}^{3+} = 3d^6\]
\[
\begin{array}{c}
3d \\
\hline
\text{4s} & \text{4p} \\
\end{array}
\]
\[d^2sp^3\]
(i) \(d^2sp^3\)
(ii) Inner orbital complex
(iii) Diamagnetic
(iv) Zero

\[\text{[Cr(H}_2\text{O)}]^{3+}\]
\[\text{Cr}^{3+} = 3d^3\]
\[
\begin{array}{c}
3d \\
\hline
\text{4s} & \text{4p} \\
\end{array}
\]
\[d^2sp^3\]
(i) \(d^2sp^3\)
(ii) Inner orbital complex
(iii) Paramagnetic
(iv) 3.87 BM
[Fe(Cl)₆]⁴⁻

Fe²⁺ = 3d⁸

48. (i) A - [Co(NH₃)₅SO₄]Cl
 B - [Co(NH₃)₅Cl]SO₄
(ii) Ionisation isomerism
(iii) (A), Pentaamminesulphatocobalt (III) chloride
 (B), Pentaamminechlorocobalt (III) sulphate.

49. When white light falls on the complex, some part of it is absorbed. Higher the crystal field splitting, lower will be the wavelength absorbed by the complex. The observed colour of complex is the colour generated from the wavelength left over.

50. $\Delta_t = \frac{4}{9} \Delta_0$. So higher wavelength is absorbed in octahedral complex than tetrahedral complex for same metal and ligands.
1. The order of reactivity of following alcohols with halogen acids is ___________.

(A) CH₃CH₂—CH₂—OH (B) CH₃CH₂—CH—OH (C) CH₃CH₂—C—OH

(i) (A) > (B) > (C)
(ii) (C) > (B) > (A)
(iii) (B) > (A) > (C)
(iv) (A) > (C) > (B)

2. Which of the following alcohols will yield the corresponding alkyl chloride on reaction with concentrated HCl at room temperature?

(i) CH₃CH₂—CH₂—OH
(ii) CH₃CH₂—CH—OH
(iii) CH₃CH₅—CH—CH₂OH
(iv) CH₃CH₅—C—OH
3. Identify the compound Y in the following reaction.

\[
\begin{align*}
\text{C}_6\text{H}_5\text{NH}_2 + \text{NaNO}_2 + \text{HCl} & \xrightarrow{273\text{–}278\text{K}} \text{C}_6\text{H}_5\text{N}^+\text{Cl}^- + \text{CuCl}_2, \\
\text{Y} + \text{N}_2
\end{align*}
\]

(i) \(\text{C}_6\text{H}_5\text{Cl}\)
(ii) \(\bigcirc\)
(iii) \(\text{C}_6\text{H}_4\text{Cl}_2\)
(iv) \(\text{C}_6\text{H}_4\text{Cl}\)

4. Toluene reacts with a halogen in the presence of iron (III) chloride giving ortho and para halo compounds. The reaction is

(i) Electrophilic elimination reaction
(ii) Electrophilic substitution reaction
(iii) Free radical addition reaction
(iv) Nucleophilic substitution reaction

5. Which of the following is halogen exchange reaction?

(i) \(\text{R} \: \text{X} + \text{NaI} \rightarrow \text{RI} + \text{NaX}\)
(ii) \(\text{C} = \text{C} + \text{H} \: \text{X} \rightarrow \text{C} - \text{C} - \text{H} \: \text{X}\)
(iii) \(\text{R} - \text{OH} + \text{HX} \xrightarrow{\text{ZnCl}_2} \text{R} - \text{X} + \text{H}_2\text{O}\)
(iv) \(\text{C}_6\text{H}_5\text{CH}_3 + \text{X}_2 \xrightarrow{\text{Fe}} \text{C}_6\text{H}_5\text{CH}_3\text{X} + \text{C}_6\text{H}_5\text{CH}_3\text{X}\)

6. Which reagent will you use for the following reaction?

\[
\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_3 \rightarrow \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{Cl} + \text{CH}_3\text{CH}_2\text{CHClCH}_3
\]

(i) \(\text{Cl}_2/\text{UV light}\)
(ii) \(\text{NaCl} + \text{H}_2\text{SO}_4\)
(iii) \(\text{Cl}_2\) gas in dark
(iv) \(\text{Cl}_2\) gas in the presence of iron in dark
7. Arrange the following compounds in the increasing order of their densities.

(a)
(b)
(c)
(d)

(i) (a) < (b) < (c) < (d)
(ii) (a) < (c) < (d) < (b)
(iii) (d) < (c) < (b) < (a)
(iv) (b) < (d) < (c) < (a)

8. Arrange the following compounds in increasing order of their boiling points.

(a)
(b)
(c)

(i) (b) < (a) < (c)
(ii) (a) < (b) < (c)
(iii) (c) < (a) < (b)
(iv) (c) < (b) < (a)

9. In which of the following molecules carbon atom marked with asterisk (*) is asymmetric?

(a)
(b)
(c)
(d)

(i) (a), (b), (c), (d)
(ii) (a), (b), (c)
(iii) (b), (c), (d)
(iv) (a), (c), (d)

10. Which of the following structures is enantiomeric with the molecule (A) given below:

(A)
11. Which of the following is an example of *vic*-dihalide?
 (i) Dichloromethane
 (ii) 1,2-dichloroethane
 (iii) Ethylidene chloride
 (iv) Allyl chloride

12. The position of –Br in the compound in \(\text{CH}_3\text{CH}≡\text{CHC(Br)(CH}_3\text{)}_2 \) can be classified as ____________.
 (i) Allyl
 (ii) Aryl
 (iii) Vinyl
 (iv) Secondary

13. Chlorobenzene is formed by reaction of chlorine with benzene in the presence of \(\text{AlCl}_3 \). Which of the following species attacks the benzene ring in this reaction?
 (i) \(\text{Cl}^- \)
 (ii) \(\text{Cl}^+ \)
 (iii) \(\text{AlCl}_3 \)
 (iv) \([\text{AlCl}_4]^- \)

14. Ethylidene chloride is a/an ____________.
 (i) *vic*-dihalide
 (ii) *gem*-dihalide
 (iii) allylic halide
 (iv) vinylic halide

15. What is ‘A’ in the following reaction?

\[
\text{CH}_2≡\text{CHCH}_2 + \text{HCl} \rightarrow A
\]
16. A primary alkyl halide would prefer to undergo ____________.
 (i) S_N^1 reaction
 (ii) S_N^2 reaction
 (iii) α-Elimination
 (iv) Racemisation

17. Which of the following alkyl halides will undergo S_N^1 reaction most readily?
 (i) $(\text{CH}_3)_3\text{C—F}$
 (ii) $(\text{CH}_3)_3\text{C—Cl}$
 (iii) $(\text{CH}_3)_3\text{C—Br}$
 (iv) $(\text{CH}_3)_3\text{C—I}$

18. Which is the correct IUPAC name for $\text{CH}_3—\text{CH—CH}_2—\text{Br}$?
 (i) 1-Bromo-2-ethylpropane
 (ii) 1-Bromo-2-ethyl-2-methylethane
 (iii) 1-Bromo-2-methylbutane
 (iv) 2-Methyl-1-bromobutane

19. What should be the correct IUPAC name for diethylbromomethane?
 (i) 1-Bromo-1,1-diethylmethane
 (ii) 3-Bromopentane
 (iii) 1-Bromo-1-ethylpropane
 (iv) 1-Bromopentane

20. The reaction of toluene with chlorine in the presence of iron and in the absence of light yields ____________.

 (i)
 (ii)
21. Chloromethane on treatment with excess of ammonia yields mainly

(i) N, N-Dimethylmethanamine \((\text{CH}_3\text{NCH}_3\text{)}\)
(ii) N–methylmethanamine \((\text{CH}_3\text{NHCH}_3\text{)}\)
(iii) Methanamine \((\text{CH}_2\text{NH}_2\text{)}\)
(iv) Mixture containing all these in equal proportion

22. Molecules whose mirror image is non superimposable over them are known as chiral. Which of the following molecules is chiral in nature?

(i) 2-Bromobutane
(ii) 1-Bromobutane
(iii) 2-Bromopropane
(iv) 2-Bromopropan-2-ol

23. Reaction of \(\text{C}_6\text{H}_5\text{CH}_2\text{Br}\) with aqueous sodium hydroxide follows ____________.

(i) \(S_n^1\) mechanism
(ii) \(S_n^2\) mechanism
(iii) Any of the above two depending upon the temperature of reaction
(iv) Saytzeff rule

24. Which of the carbon atoms present in the molecule given below are asymmetric?

\[\text{HO} \text{C} \text{a} \text{OH} \text{H} \text{b} \text{C} \text{c} \text{d} \text{O} \]

(i) a, b, c, d
(ii) b, c
(iii) a, d
(iv) a, b, c

25. Which of the following compounds will give racemic mixture on nucleophilic substitution by \(\text{OH}^-\) ion?

(a) \(\text{CH}_3\text{CH}–\text{Br}\)
(b) \(\text{CH}_3\text{C}–\text{CH}_3\)
(c) \(\text{CH}_3\text{CH}–\text{CH}_2\text{Br}\)

(i) (a)
(ii) (a), (b), (c)
(iii) (b), (c)
(iv) (a), (c)
Note: In the questions 26 to 29 arrange the compounds in increasing order of rate of reaction towards nucleophilic substitution.

26. (a) \(\text{Cl} \)
(b) \(\text{Cl} \) \(\text{NO}_2 \)
(c) \(\text{Cl} \) \(\text{NO}_2 \)

(i) (a) < (b) < (c)
(ii) (c) < (b) < (a)
(iii) (a) < (c) < (b)
(iv) (c) < (a) < (b)

27. (a) \(\text{Cl} \)
(b) \(\text{Cl} \) \(\text{CH}_3 \)
(c) \(\text{Cl} \) \(\text{CH}_3 \)

(i) (a) < (b) < (c)
(ii) (a) < (c) < (b)
(iii) (c) < (b) < (a)
(iv) (b) < (c) < (a)

28. (a) \(\text{Cl} \)
(b) \(\text{Cl} \) \(\text{NO}_2 \)
(c) \(\text{Cl} \) \(\text{O}_2\text{N} \) \(\text{NO}_2 \)

(i) (c) < (b) < (a)
(ii) (b) < (c) < (a)
(iii) (a) < (c) < (b)
(iv) (a) < (b) < (c)

29. (a) \(\text{Cl} \)
(b) \(\text{Cl} \) \(\text{CH}_3 \)
(c) \(\text{Cl} \) \(\text{CH}_3 \)

(i) (a) < (b) < (c)
(ii) (c) < (b) < (a)
(iii) (b) < (c) < (a)
(iv) (a) < (c) < (b)
30. Which is the correct increasing order of boiling points of the following compounds?

1-Iodobutane, 1-Bromobutane, 1-Chlorobutane, Butane

(i) Butane < 1-Chlorobutane < 1-Bromobutane < 1-Iodobutane
(ii) 1-Iodobutane < 1-Chlorobutane < 1-Bromobutane < Butane
(iii) Butane < 1-Iodobutane < 1-Bromobutane < 1-Chlorobutane
(iv) Butane < 1-Chlorobutane < 1-Iodobutane < 1-Bromobutane

31. Which is the correct increasing order of boiling points of the following compounds?

1-Bromoethane, 1-Bromopropane, 1-Bromobutane, Bromobenzene

(i) Bromobenzene < 1-Bromobutane < 1-Bromopropane < 1-Bromoethane
(ii) Bromobenzene < 1-Bromoethane < 1-Bromopropane < 1-Bromobutane
(iii) 1-Bromopropane < 1-Bromobutane < 1-Bromoethane < Bromobenzene
(iv) 1-Bromoethane < 1-Bromopropane < 1-Bromobutane < Bromobenzene

II. Multiple Choice Questions (Type-II)

Note: In the following questions two or more options may be correct.

Consider the following reaction and answer the questions no. 32–34.

\[
\begin{align*}
\text{(a)} & \quad \text{HO}^+ + \text{H}_3\text{C}^\text{Cl} \rightarrow \left[\begin{array}{c}
\text{H} \\
\text{H} \\
\text{H} \\
\text{Cl}
\end{array} \right] \\
\text{(b)} & \quad \text{(c)} \\
\text{(d)} & \quad \text{HO} \quad \text{H} \\
\text{(e)} & \quad \text{H} \\
\end{align*}
\]

32. Which of the statements are correct about above reaction?

(i) (a) and (e) both are nucleophiles.
(ii) In (c) carbon atom is \(sp^3\) hybridised.
(iii) In (c) carbon atom is \(sp^2\) hybridised.
(iv) (a) and (e) both are electrophiles.

33. Which of the following statements are correct about this reaction?

(i) The given reaction follows \(S_n,2\) mechanism.
(ii) (b) and (d) have opposite configuration.
(iii) (b) and (d) have same configuration.
(iv) The given reaction follows S_N1 mechanism.

34. Which of the following statements are correct about the reaction intermediate?
 (i) Intermediate (c) is unstable because in this carbon is attached to 5 atoms.
 (ii) Intermediate (c) is unstable because carbon atom is sp^2 hybridised.
 (iii) Intermediate (c) is stable because carbon atom is sp^2 hybridised.
 (iv) Intermediate (c) is less stable than the reactant (b).

Answer Q. No. 35 and 36 on the basis of the following reaction.

![Reaction Diagram]

35. Which of the following statements are correct about the mechanism of this reaction?
 (i) A carbocation will be formed as an intermediate in the reaction.
 (ii) OH^- will attach the substrate (b) from one side and Cl^- will leave it simultaneously from other side.
 (iii) An unstable intermediate will be formed in which OH^- and Cl^- will be attached by weak bonds.
 (iv) Reaction proceeds through S_N1 mechanism.

36. Which of the following statements are correct about the kinetics of this reaction?
 (i) The rate of reaction depends on the concentration of only (b).
 (ii) The rate of reaction depends on concentration of both (a) and (b).
 (iii) Molecularity of reaction is one.
 (iv) Molecularity of reaction is two.

37. Haloalkanes contain halogen atom(s) attached to the sp^3 hybridised carbon atom of an alkyl group. Identify haloalkane from the following compounds.
 (i) 2-Bromopentane
 (ii) Vinyl chloride (chloroethene)
 (iii) 2-chloroacetophenone
 (iv) Trichloromethane

38. Ethylene chloride and ethylidene chloride are isomers. Identify the correct statements.
 (i) Both the compounds form same product on treatment with alcoholic KOH.
 (ii) Both the compounds form same product on treatment with aq.NaOH.
 (iii) Both the compounds form same product on reduction.
 (iv) Both the compounds are optically active.
39. Which of the following compounds are gem-dihalides?
 (i) Ethylidene chloride
 (ii) Ethylene dichloride
 (iii) Methylene chloride
 (iv) Benzyl chloride

40. Which of the following are secondary bromides?
 (i) \((\text{CH}_3)_2\text{CHBr}\)
 (ii) \((\text{CH}_3)_3\text{CCHBr}\)
 (iii) \(\text{CH}_3\text{CH(Br)CH}_2\text{CH}_3\)
 (iv) \((\text{CH}_3)_2\text{CBrCH}_2\text{CH}_3\)

41. Which of the following compounds can be classified as aryl halides?
 (i) \(\text{p-ClC}_6\text{H}_4\text{CH(CH}_3)_2\)
 (ii) \(\text{p-CH}_3\text{CHCl(C}_6\text{H}_4\text{)CH}_2\text{CH}_3\)
 (iii) \(\text{o-BrH}_2\text{C-C}_6\text{H}_4\text{CH(CH}_3\text{)CH}_2\text{CH}_3\)
 (iv) \(\text{C}_6\text{H}_5\text{-Cl}\)

42. Alkyl halides are prepared from alcohols by treating with
 (i) \(\text{HCl} + \text{ZnCl}_2\)
 (ii) \(\text{Red P} + \text{Br}_2\)
 (iii) \(\text{H}_2\text{SO}_4 + \text{KI}\)
 (iv) All the above

43. Alkyl fluorides are synthesised by heating an alkyl chloride/bromide in presence of ____________ or ____________.
 (i) \(\text{Ca F}_2\)
 (ii) \(\text{CoF}_2\)
 (iii) \(\text{Hg}_2\text{F}_2\)
 (iv) \(\text{NaF}\)

III. Short Answer Type

44. Aryl chlorides and bromides can be easily prepared by electrophilic substitution of arenes with chlorine and bromine respectively in the presence of Lewis acid catalysts. But why does preparation of aryl iodides requires presence of an oxidising agent?

45. Out of \(\text{o-}\) and \(\text{p-}\) dibromobenzene which one has higher melting point and why?

46. Which of the compounds will react faster in \(\text{S}_n\) reaction with the \(\text{OH}\) ion?
 \(\text{CH}_3\text{—CH}_2\text{—Cl}\) or \(\text{C}_6\text{H}_5\text{—CH}_2\text{—Cl}\)

47. Why iodoform has appreciable antiseptic property?
48. Haloarenes are less reactive than haloalkanes and haloalkenes. Explain.

49. Discuss the role of Lewis acids in the preparation of aryl bromides and chlorides in the dark.

50. Which of the following compounds (a) and (b) will not react with a mixture of NaBr and H₂SO₄. Explain why?

(a) CH₃CH₂CH₂OH
(b) \[\text{OH} \]

51. Which of the products will be major product in the reaction given below? Explain.

\[\text{CH}_3\text{CH} = \text{CH}_2 + \text{HI} \rightarrow \text{CH}_3\text{CH}_2\text{I} + \text{CH}_3\text{CHICH}_3 \]

(A) (B)

52. Why is the solubility of haloalkanes in water very low?

53. Draw other resonance structures related to the following structure and find out whether the functional group present in the molecule is ortho, para directing or meta directing.

54. Classify the following compounds as primary, secondary and tertiary halides.
 (i) 1-Bromobut-2-ene
 (ii) 4-Bromopent-2-ene
 (iii) 2-Bromo-2-methylpropane

55. Compound ‘A’ with molecular formula C₄H₉Br is treated with aq. KOH solution. The rate of this reaction depends upon the concentration of the compound ‘A’ only. When another optically active isomer ‘B’ of this compound was treated with aq. KOH solution, the rate of reaction was found to be dependent on concentration of compound and KOH both.
 (i) Write down the structural formula of both compounds ‘A’ and ‘B’.
 (ii) Out of these two compounds, which one will be converted to the product with inverted configuration.

56. Write the structures and names of the compounds formed when compound ‘A’ with molecular formula C₇H₈ is treated with Cl₂ in the presence of FeCl₃.

57. Identify the products A and B formed in the following reaction:
 (a) CH₃—CH₂—CH═CH—CH₃+HCl → A + B

58. Which of the following compounds will have the highest melting point and why?
59. Write down the structure and IUPAC name for neo-pentylbromide.

60. A hydrocarbon of molecular mass 72 g mol\(^{-1}\) gives a single monochloro derivative and two dichloro derivatives on photo chlorination. Give the structure of the hydrocarbon.

61. Name the alkene which will yield 1-chloro-1-methylcyclohexane by its reaction with HCl. Write the reactions involved.

62. Which of the following haloalkanes reacts with aqueous KOH most easily? Explain giving reason.
 (i) 1-Bromobutane
 (ii) 2-Bromobutane
 (iii) 2-Bromo-2-methylpropane
 (iv) 2-Chlorobutane

63. Why can aryl halides not be prepared by reaction of phenol with HCl in the presence of ZnCl\(_2\)?

64. Which of the following compounds would undergo S\(_{N}\)\(_1\) reaction faster and why?

65. Allyl chloride is hydrolysed more readily than \(n\)-propyl chloride. Why?

66. Why is it necessary to avoid even traces of moisture during the use of a Grignard reagent?

67. How do polar solvents help in the first step in S\(_{N}\)\(_1\) mechanism?

68. Write a test to detect the presence of double bond in a molecule.

69. Diphenyls are potential threat to the environment. How are these produced from arylhalides?
70. What are the IUPAC names of the insecticide DDT and benzenehexachloride? Why is their use banned in India and other countries?

71. Elimination reactions (especially β-elimination) are as common as the nucleophilic substitution reaction in case of alkyl halides. Specify the reagents used in both cases.

72. How will you obtain monobromobenzene from aniline?

73. Aryl halides are extremely less reactive towards nucleophilic substitution. Predict and explain the order of reactivity of the following compounds towards nucleophilic substitution:

74. tert-Butylbromide reacts with aq. NaOH by S_N_1 mechanism while n-butylbromide reacts by S_N_2 mechanism. Why?

75. Predict the major product formed when HCl is added to isobutylene. Explain the mechanism involved.

76. Discuss the nature of C–X bond in the haloarenes.

77. How can you obtain iodoethane from ethanol when no other iodine containing reagent except NaI is available in the laboratory?

78. Cyanide ion acts as an ambident nucleophile. From which end it acts as a stronger nucleophile in aqueous medium? Give reason for your answer.

IV. Matching Type

Note: Match the items given in Column I and Column II in the following questions.

79. Match the compounds given in Column I with the effects given in Column II.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) Chloramphenicol</td>
<td>(a) Malaria</td>
</tr>
<tr>
<td>(ii) Thyroxine</td>
<td>(b) Anaesthetic</td>
</tr>
<tr>
<td>(iii) Chloroquine</td>
<td>(c) Typhoid fever</td>
</tr>
<tr>
<td>(iv) Chloroform</td>
<td>(d) Goiter</td>
</tr>
<tr>
<td></td>
<td>(e) Blood substituent</td>
</tr>
</tbody>
</table>
80. Match the items of Column I and Column II.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) S₂1 reaction</td>
<td>(a) vic-dibromides</td>
</tr>
<tr>
<td>(ii) Chemicals in fire extinguisher</td>
<td>(b) gem-dihalides</td>
</tr>
<tr>
<td>(iii) Bromination of alkenes</td>
<td>(c) Racemisation</td>
</tr>
<tr>
<td>(iv) Alkylidene halides</td>
<td>(d) Saytzeff rule</td>
</tr>
<tr>
<td>(v) Elimination of HX from alkylhalide</td>
<td>(e) Chlorobromocarbons</td>
</tr>
</tbody>
</table>

81. Match the structures of compounds given in Column I with the classes of compounds given in Column II.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) CH₃—CH—CH₃</td>
<td>(a) Aryl halide</td>
</tr>
<tr>
<td>(ii) CH₂=CH—CH₂—X</td>
<td>(b) Alkyl halide</td>
</tr>
<tr>
<td>(iii)</td>
<td>(c) Vinyl halide</td>
</tr>
<tr>
<td>(iv) CH₂=CH—X</td>
<td>(d) Allyl halide</td>
</tr>
</tbody>
</table>

82. Match the reactions given in Column I with the types of reactions given in Column II.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) CH₃—CH=CH₂ + HBr → CH₃—CH—CH₃</td>
<td>(a) Nucleophilic aromatic substitution</td>
</tr>
<tr>
<td>(ii) CH₃—CH=CH₂ + HBr → CH₃—CH—Br</td>
<td>(b) Electrophilic aromatic substitution</td>
</tr>
<tr>
<td>(iii) CH₃—CH—I → CH₃—CH—OH</td>
<td>(c) Saytzeff elimination</td>
</tr>
</tbody>
</table>
83. Match the structures given in Column I with the names in Column II.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) </td>
<td>(a) 4-Bromopent-2-ene</td>
</tr>
<tr>
<td>(ii) </td>
<td>(b) 4-Bromo-3-methylpent-2-ene</td>
</tr>
<tr>
<td>(iii) </td>
<td>(c) 1-Bromo-2-methylbut-2-ene</td>
</tr>
<tr>
<td>(iv) </td>
<td>(d) 1-Bromo-2-methylpent-2-ene</td>
</tr>
</tbody>
</table>

84. Match the reactions given in Column I with the names given in Column II.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) </td>
<td>(a) Fittig reaction</td>
</tr>
<tr>
<td>(ii) </td>
<td>(b) Wurtz Fittig reaction</td>
</tr>
<tr>
<td>(iii) </td>
<td>(c) Finkelstein reaction</td>
</tr>
<tr>
<td>(iv) </td>
<td>(d) Sandmeyer reaction</td>
</tr>
</tbody>
</table>
V. Assertion and Reason Type

Note: In the following questions a statement of assertion followed by a statement of reason is given. Choose the correct answer out of the following choices.

(i) Assertion and reason both are correct and reason is correct explanation of assertion.
(ii) Assertion and reason both are wrong statements.
(iii) Assertion is correct but reason is wrong statement.
(iv) Assertion is wrong but reason is correct statement.
(v) Assertion and reason both are correct statements but reason is not correct explanation of assertion.

85. **Assertion**: Phosphorus chlorides (tri and penta) are preferred over thionyl chloride for the preparation of alkyl chlorides from alcohols.

Reason: Phosphorus chlorides give pure alkyl halides.

86. **Assertion**: The boiling points of alkyl halides decrease in the order: RI > RBr > RCl > RF

Reason: The boiling points of alkyl chlorides, bromides and iodides are considerably higher than that of the hydrocarbon of comparable molecular mass.

87. **Assertion**: KCN reacts with methyl chloride to give methyl isocyanide

Reason: CN\(^-\) is an ambident nucleophile.

88. **Assertion**: tert-Butyl bromide undergoes Wurtz reaction to give 2, 2, 3, 3-tetramethylbutane.

Reason: In Wurtz reaction, alkyl halides react with sodium in dry ether to give hydrocarbon containing double the number of carbon atoms present in the halide.

89. **Assertion**: Presence of a nitro group at ortho or para position increases the reactivity of haloarenes towards nucleophilic substitution.

Reason: Nitro group, being an electron withdrawing group decreases the electron density over the benzene ring.

90. **Assertion**: In monohaloarenes, further electrophilic substitution occurs at ortho and para positions.

Reason: Halogen atom is a ring deactivator.

91. **Assertion**: Aryl iodides can be prepared by reaction of arenes with iodine in the presence of an oxidising agent.

Reason: Oxidising agent oxidises I\(_2\) into HI.

92. **Assertion**: It is difficult to replace chlorine by –OH in chlorobenzene in comparison to that in chloroethane.

Reason: Chlorine-carbon (C—Cl) bond in chlorobenzene has a partial double bond character due to resonance.
93. **Assertion**: Hydrolysis of (−)-2-bromooctane proceeds with inversion of configuration.

Reason: This reaction proceeds through the formation of a carbocation.

94. **Assertion**: Nitration of chlorobenzene leads to the formation of m-nitrochlorobenzene

Reason: —NO_2 group is a m-directing group.

VI. Long Answer Type

95. Some alkylhalides undergo substitution whereas some undergo elimination reaction on treatment with bases. Discuss the structural features of alkyl halides with the help of examples which are responsible for this difference.

96. Some halogen containing compounds are useful in daily life. Some compounds of this class are responsible for exposure of flora and fauna to more and more of UV light which causes destruction to a great extent. Name the class of these halocompounds. In your opinion, what should be done to minimise harmful effects of these compounds.

97. Why are aryl halides less reactive towards nucleophilic substitution reactions than alkyl halides? How can we enhance the reactivity of aryl halides?
ANSWERS

I. Multiple Choice Questions (Type-I)

1. (ii) 2. (iv) 3. (i) 4. (ii) 5. (i) 6. (i)
7. (i)
8. (iii), boiling point of (a) 364 K, boiling point of (b) 375 K, boiling point of (c) 346 K
9. (ii)
10. (i), Hint : Make the models of all the molecules and superimpose (i) to (iv) molecules on molecule (A).
17. (iv) 18. (iii) 19. (ii) 20. (iv) 21. (iii) 22. (i)
23. (i), Hint : $\text{C}_6\text{H}_5\text{C}=\text{CH}_2$ is stable cation so favours the progress of reaction by $\text{S}_\text{n}1$ mechanism.
24. (ii) 25. (i) 26. (iii) 27. (iv) 28. (iv) 29. (iii)
30. (i) 31. (iv)

II. Multiple Choice Questions (Type-II)

32. (i), (iii) 33. (i), (ii) 34. (i), (iv) 35. (i), (iv)
36. (i), (iii) 37. (i), (iv) 38. (i), (iii) 39. (i), (iii)
40. (i), (iii) 41. (i), (iv) 42. (i), (ii) 43. (i), (iii)

III. Short Answer Type

44. Iodination reactions are reversible in nature. To carry out the reaction in the forward direction, HI formed during iodination is removed by oxidation. HIO_4 is used as an oxidising agent.

45. p-Dibromobenzene has higher melting point than its o-isomer. It is due to symmetry of p-isomer which fits in crystal lattice better than the o-isomer.

46. $\text{C}_6\text{H}_5=\text{CH}_2-\text{Cl}$

47. Due to liberation of free iodine.

48. See NCERT textbook for Class XII.

49. See NCERT textbook for Class XII.

50. (b), $\text{C}-\text{O}$ bond is more stable in (b) because of resonance.
51. ‘B’ is major product of the reaction. For explanation, see Markownikov’s rule. Consult chemistry textbook, Class XI, NCERT, Section 13.3.5.

52. See NCERT textbook for Class XII.

53. Ortho-para directing due to increase in the electron density at ortho and para positions. (For resonance structures consult NCERT textbook, Class XII)

54. (i) Primary (ii) Secondary (iii) Tertiary

55. (i) Compound A : \(\text{CH}_3-\text{C}-\text{CH}_3 \)
 Compound B : \(\text{CH}_3-\text{CH}-\text{CH}-\text{CH}_3 \)

(ii) Compound ‘B’.

56.

57. (A) \(\text{CH}_3-\text{CH}_2-\text{CH}-\text{CH}_2-\text{CH}_3 \)
 (B) \(\text{CH}_3-\text{CH}_2-\text{CH}_2-\text{CH}-\text{CH}_3 \)

58. II, due to symmetry of para-positions; it fits into crystal lattice better than other isomers.

59. \(\text{CH}_3-\text{C}-\text{CH}_2-\text{Br} \): 1-Bromo-2,2-dimethylpropane

60. \(\text{C}_5\text{H}_{12} \), pentane has molecular mass 72 g mol\(^{-1}\), i.e. the isomer of pentane which yields single monochloro derivative should have all the 12 hydrogens equivalent.

The hydrocarbon is \(\text{CH}_3-\text{C}-\text{CH}_3 \)

Monochloro derivative \(\text{CH}_3-\text{C}-\text{CH}_2\text{Cl} \)
61. Dichloro derivatives

(i) \[\text{CH}_3\text{C} - \text{CHCl}_2 \]

(ii) \[\text{CH}_3\text{C} - \text{CH}_2\text{Cl} \]

62. (iii): The tertiary carbocation formed in the reaction is stable.

63. C—O bond in phenols is more stable due to resonance effect and it has double bond character, hence breaking of this bond is difficult.

64. (B) Undergoes S_N1 reaction faster than (A) because in case of (B), the carbocation formed after the loss of Cl^- is stabilised by resonance, whereas, no such stabilisation is possible in the carbocation obtained from (A).

65. Allyl chloride shows high reactivity as the carbocation formed by hydrolysis is stabilised by resonance while no such stabilisation of carbocation exists in the case of \(n \)-propyl chloride.

66. Grignard reagents are highly reactive and react with water to give corresponding hydrocarbons.

\[\text{RMgX} + \text{H}_2\text{O} \rightarrow \text{RH} + \text{Mg(OH)}\text{X} \]

67. [**Hint:** solvation of carbocation.]

68. [**Hint:** (1) Unsaturation test with Br_2 water (2) Bayer’s test.]

69. Consult NCERT textbook for Class XII.

70. Consult NCERT textbook for Class XII.

71. Consult NCERT textbook for Class XII.

72. Consult NCERT textbook for Class XII.

73. III > II > I

74. Consult Chemistry textbook (NCERT) Class XII, Part II.
75. \[\text{CH}_3-\text{C} \equiv \text{CH}_2 + \text{HCl} \rightarrow \text{CH}_3-\text{C} \equiv \text{CH}_3 \]

(Isobutylene) \hspace{2cm} (2-Chloro-2-methylpropane)

The mechanism involved in this reaction is:

Step I

\[\text{CH}_3-\text{C} \equiv \text{CH}_2 \overset{\text{H}^+}{\rightarrow} \text{CH}_3-\text{C}^+ \text{CH}_3 + \text{CH}_3-\text{C}^+ \text{CH}_3 \]

Isobutylene \hspace{2cm} 3° carbocation \hspace{1cm} 1° carbocation

(more stable) \hspace{1cm} (less stable)

Step II

\[\text{CH}_3-\text{C}^+ \text{CH}_3 \overset{\text{Cl}^-}{\rightarrow} \text{CH}_3-\text{C} \equiv \text{CH}_3 \]

76. **Hint**: Discuss polar nature and stabilisation of C—X bond.

77. **Hint**: \(\text{C}_2\text{H}_5\text{OH} + \text{HCl} \xrightarrow{\text{ZnCl}_2} \text{C}_2\text{H}_5\text{Cl} , \text{NaI} \rightarrow \text{C}_2\text{H}_5\text{I} \).

78. **Hint**: It acts as a stronger nucleophile from the carbon end because it will lead to the formation of C—C bond which is more stable than the C—N bond.

IV. Matching Type

79. (i) \(\rightarrow\) (c) \hspace{1cm} (ii) \(\rightarrow\) (d) \hspace{1cm} (iii) \(\rightarrow\) (a) \hspace{1cm} (iv) \(\rightarrow\) (b)

80. (i) \(\rightarrow\) (c) \hspace{1cm} (ii) \(\rightarrow\) (e) \hspace{1cm} (iii) \(\rightarrow\) (a) \hspace{1cm} (iv) \(\rightarrow\) (b) \hspace{1cm} (v) \(\rightarrow\) (d)

81. (i) \(\rightarrow\) (b) \hspace{1cm} (ii) \(\rightarrow\) (d) \hspace{1cm} (iii) \(\rightarrow\) (a) \hspace{1cm} (iv) \(\rightarrow\) (c)

82. (i) \(\rightarrow\) (b) \hspace{1cm} (ii) \(\rightarrow\) (d) \hspace{1cm} (iii) \(\rightarrow\) (e) \hspace{1cm} (iv) \(\rightarrow\) (a) \hspace{1cm} (v) \(\rightarrow\) (c)

83. (i) \(\rightarrow\) (a) \hspace{1cm} (ii) \(\rightarrow\) (c) \hspace{1cm} (iii) \(\rightarrow\) (b) \hspace{1cm} (iv) \(\rightarrow\) (d)

84. (i) \(\rightarrow\) (b) \hspace{1cm} (ii) \(\rightarrow\) (a) \hspace{1cm} (iii) \(\rightarrow\) (d) \hspace{1cm} (iv) \(\rightarrow\) (c)

V. Assertion and Reason Type

85. (ii) \hspace{2cm} 86. (v) \hspace{2cm} 87. (iv) \hspace{2cm} 88. (i) \hspace{2cm} 89. (i) \hspace{2cm} 90. (v)

91. (iii) \hspace{2cm} 92. (i) \hspace{2cm} 93. (ii) \hspace{2cm} 94. (iv)

VI. Long Answer Type

95. **Hint**: Primary alkyl halides prefer to undergo substitution reaction by \(\text{S}_2\) mechanism whereas tertiary halides undergo elimination reaction due to the formation of stable carbocation.

96. Consult Chemistry textbook of NCERT for Class XII.

97. Consult Chemistry textbook of NCERT for Class XII.
I. Multiple Choice Questions (Type-I)

 (i) o-Cresol
 (ii) m-Cresol
 (iii) 2, 4-Dihydroxytoluene
 (iv) Benzyl alcohol

2. How many alcohols with molecular formula C₄H₁₀O are chiral in nature?
 (i) 1
 (ii) 2
 (iii) 3
 (iv) 4

3. What is the correct order of reactivity of alcohols in the following reaction?

 \[
 R-OH + HCl \xrightarrow{\text{ZnCl}_2} R-Cl + H_2O
 \]
 (i) \(1^\circ > 2^\circ > 3^\circ\)
 (ii) \(1^\circ < 2^\circ > 3^\circ\)
 (iii) \(3^\circ > 2^\circ > 1^\circ\)
 (iv) \(3^\circ > 1^\circ > 2^\circ\)

4. CH₃CH₂OH can be converted into CH₃CHO by ____________.
 (i) catalytic hydrogenation
 (ii) treatment with LiAlH₄
5. The process of converting alkyl halides into alcohols involves ____________.
 (i) addition reaction
 (ii) substitution reaction
 (iii) dehydrohalogenation reaction
 (iv) rearrangement reaction

6. Which of the following compounds is aromatic alcohol?

 (A)
 (B)
 (C)
 (D)

 (i) A, B, C, D
 (ii) A, D
 (iii) B, C
 (iv) A

7. Give IUPAC name of the compound given below.

 \[
 \text{CH}_3-\text{CH}-\text{CH}_2-\text{CH}_2-\text{CH}-\text{CH}_3, \quad \text{Cl} \quad \text{OH}
 \]

 (i) 2-Chloro-5-hydroxyhexane
 (ii) 2-Hydroxy-5-chlorohexane
 (iii) 5-Chlorohexan-2-ol
 (iv) 2-Chlorohexan-5-ol

8. IUPAC name of \textit{m}-cresol is ____________.

 (i) 3-methylphenol
 (ii) 3-chlorophenol
 (iii) 3-methoxyphenol
 (iv) benzene-1,3-diol

9. IUPAC name of the compound \text{CH}_3-\text{CH}-\text{OCH}_3 is ____________.

 (i) 1-methoxy-1-methylethane
 (ii) 2-methoxy-2-methylethane
10. Which of the following species can act as the strongest base?
 (i) $\overset{\ominus}{\text{O}}\text{H}$
 (ii) $\overset{\ominus}{\text{O}}\text{R}$
 (iii) $\overset{\ominus}{\text{O}}\text{C}_6\text{H}_5$
 (iv) $\overset{\ominus}{\text{O}}\text{C}_6\text{H}_5\text{NO}_2$

11. Which of the following compounds will react with sodium hydroxide solution in water?
 (i) $\text{C}_6\text{H}_5\text{OH}$
 (ii) $\text{C}_6\text{H}_5\text{CH}_2\text{OH}$
 (iii) $(\text{CH}_3)_3\text{COH}$
 (iv) $\text{C}_2\text{H}_5\text{OH}$

12. Phenol is less acidic than ___________.
 (i) ethanol
 (ii) o-nitrophenol
 (iii) o-methylphenol
 (iv) o-methoxyphenol

13. Which of the following is most acidic?
 (i) Benzyl alcohol
 (ii) Cyclohexanol
 (iii) Phenol
 (iv) m-Chlorophenol

14. Mark the correct order of decreasing acid strength of the following compounds.

 (a) $\text{C}_6\text{H}_5\text{OH}$
 (b) $\text{C}_6\text{H}_5\text{OH}$
 (c) $\text{C}_6\text{H}_5\text{CH}_2\text{OH}$
 (d) $\text{C}_6\text{H}_5\text{CH}_2\text{OH}$
 (e) $\text{C}_6\text{H}_5\text{CH}_2\text{OH}$
15. Mark the correct increasing order of reactivity of the following compounds with HBr/HCl.

(i) $e > d > b > a > c$
(ii) $b > d > a > c > e$
(iii) $d > e > c > b > a$
(iv) $e > d > c > b > a$

16. Arrange the following compounds in increasing order of boiling point.
Propan-1-ol, butan-1-ol, butan-2-ol, pentan-1-ol

(i) Propan-1-ol, butan-2-ol, butan-1-ol, pentan-1-ol
(ii) Propan-1-ol, butan-1-ol, butan-2-ol, pentan-1-ol
(iii) Pentan-1-ol, butan-2-ol, butan-1-ol, propan-1-ol
(iv) Pentan-1-ol, butan-1-ol, butan-2-ol, propan-1-ol

II. Multiple Choice Questions (Type-II)

Note: In the following questions two or more options may be correct.
17. Which of the following are used to convert $RCHO$ into RCH_2OH?
 (i) H_2/Pd
 (ii) $LiAlH_4$
 (iii) $NaBH_4$
 (iv) Reaction with $RMgX$ followed by hydrolysis

18. Which of the following reactions will yield phenol?

 (i) Cl fusion with $NaOH$ at 300 atm
 (ii) H_2O/H^+
19. Which of the following reagents can be used to oxidise primary alcohols to aldehydes?
 (i) \(\text{CrO}_3 \) in anhydrous medium.
 (ii) \(\text{KMnO}_4 \) in acidic medium.
 (iii) Pyridinium chlorochromate.
 (iv) Heat in the presence of Cu at 573K.

20. Phenol can be distinguished from ethanol by the reactions with ________.
 (i) \(\text{Br}_2 \)/water
 (ii) Na
 (iii) Neutral \(\text{FeCl}_3 \)
 (iv) All the above

21. Which of the following are benzylic alcohols?
 (i) \(\text{C}_6\text{H}_5\text{-CH}_2\text{-CH}_2\text{OH} \)
 (ii) \(\text{C}_6\text{H}_5\text{-CH}_2\text{OH} \)
 (iii) \(\text{C}_6\text{H}_5\text{-CH-OH} \)
 (iv) \(\text{C}_6\text{H}_5\text{-CH}_3\text{-CH-OH} \)

III. Short Answer Type

22. What is the structure and IUPAC name of glycerol?
23. Write the IUPAC name of the following compounds.

(A) \(\text{CH}_3\text{CHCHCHCH}_3 \)

(B) \(\text{CH}_3\text{OH} \) \(\text{CH}_3\text{OH} \)

24. Write the IUPAC name of the compound given below.

\(\text{CH}_3\text{CHCHCHOH} \)

25. Name the factors responsible for the solubility of alcohols in water.

26. What is denatured alcohol?

27. Suggest a reagent for the following conversion.

\[\text{HO} \rightarrow \text{O} \]

28. Out of 2-chloroethanol and ethanol which is more acidic and why?

29. Suggest a reagent for conversion of ethanol to ethanal.

30. Suggest a reagent for conversion of ethanol to ethanoic acid.

31. Out of \(\text{o-nitrophenol} \) and \(\text{p-nitrophenol} \), which is more volatile? Explain.

32. Out of \(\text{o-nitrophenol} \) and \(\text{o-cresol} \) which is more acidic?

33. When phenol is treated with bromine water, white precipitate is obtained. Give the structure and the name of the compound formed.

34. Arrange the following compounds in increasing order of acidity and give a suitable explanation.

\(\text{Phenol, o-nitrophenol, o-cresol} \)

35. Alcohols react with active metals e.g. Na, K etc. to give corresponding alkoxides. Write down the decreasing order of reactivity of sodium metal towards primary, secondary and tertiary alcohols.

36. What happens when benzene diazonium chloride is heated with water?

37. Arrange the following compounds in decreasing order of acidity.

\(\text{H}_2\text{O, ROH, HC} = \text{CH} \)

38. Name the enzymes and write the reactions involved in the preparation of ethanol from sucrose by fermentation.

39. How can propan-2-one be converted into \(\text{tert- butyl alcohol} \)?

40. Write the structures of the isomers of alcohols with molecular formula \(\text{C}_4\text{H}_{10}\text{O} \). Which of these exhibits optical activity?
41. Explain why is OH group in phenols more strongly held as compared to OH group in alcohols.

42. Explain why nucleophilic substitution reactions are not very common in phenols.

43. Preparation of alcohols from alkenes involves the electrophilic attack on alkene carbon atom. Explain its mechanism.

44. Explain why is O==C==O nonpolar while R—O—R is polar.

45. Why is the reactivity of all the three classes of alcohols with conc. HCl and ZnCl₂ (Lucas reagent) different?

46. Write steps to carry out the conversion of phenol to aspirin.

47. Nitration is an example of aromatic electrophilic substitution and its rate depends upon the group already present in the benzene ring. Out of benzene and phenol, which one is more easily nitrated and why?

48. In Kolbe’s reaction, instead of phenol, phenoxide ion is treated with carbon dioxide. Why?

49. Dipole moment of phenol is smaller than that of methanol. Why?

50. Ethers can be prepared by Williamson synthesis in which an alkyl halide is reacted with sodium alkoxide. Di-tert-butyl ether can’t be prepared by this method. Explain.

51. Why is the C—O—H bond angle in alcohols slightly less than the tetrahedral angle whereas the C—O—C bond angle in ether is slightly greater?

52. Explain why low molecular mass alcohols are soluble in water.

53. Explain why p-nitrophenol is more acidic than phenol.

54. Explain why alcohols and ethers of comparable molecular mass have different boiling points?

55. The carbon-oxygen bond in phenol is slightly stronger than that in methanol. Why?

56. Arrange water, ethanol and phenol in increasing order of acidity and give reason for your answer.

IV. Matching Type

Note: Match the items of Column I and Column II in the following questions.

57. Match the structures of the compounds given in Column I with the name of the compounds given in Column II.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(a) Hydroquinone</td>
</tr>
</tbody>
</table>
161 Alcohols, Phenols and Ethers

(ii) Phenetole

(iii) Catechol

(iv) o-Cresol

(v) Quinone

(vi) Resorcinol

(g) Anisole

58. Match the starting materials given in Column I with the products formed by these (Column II) in the reaction with HI.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) CH_3OCH_3</td>
<td>(a) OH + CH_3I</td>
</tr>
</tbody>
</table>
59. Match the items of column I with items of column II.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) Antifreeze used in car engine</td>
<td>(a) Neutral ferric chloride</td>
</tr>
<tr>
<td>(ii) Solvent used in perfumes</td>
<td>(b) Glycerol</td>
</tr>
<tr>
<td>(iii) Starting material for picric acid</td>
<td>(c) Methanol</td>
</tr>
<tr>
<td>(iv) Wood spirit</td>
<td>(d) Phenol</td>
</tr>
<tr>
<td>(v) Reagent used for detection of phenolic group</td>
<td>(e) Ethleneglycol</td>
</tr>
<tr>
<td>(vi) By product of soap industry used in cosmetics</td>
<td>(f) Ethanol</td>
</tr>
</tbody>
</table>

60. Match the items of column I with items of column II.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) Methanol</td>
<td>(a) Conversion of phenol to o-hydroxysalicylic acid</td>
</tr>
</tbody>
</table>
(ii) Kolbe’s reaction (b) Ethyl alcohol
(iii) Williamson’s synthesis (c) Conversion of phenol to salicylaldehyde
(iv) Conversion of 2° alcohol to ketone (d) Wood spirit
(v) Reimer-Tiemann reaction (e) Heated copper at 573K
(vi) Fermentation (f) Reaction of alkyl halide with sodium alkoxide

V. Assertion and Reason Type

Note: In the following questions a statement of assertion followed by a statement of reason is given. Choose the correct answer out of the following choices.

(i) Assertion and reason both are correct and reason is correct explanation of assertion.
(ii) Assertion and reason both are wrong statements.
(iii) Assertion is correct statement but reason is wrong statement.
(iv) Assertion is wrong statement but reason is correct statement.
(v) Both assertion and reason are correct statements but reason is not correct explanation of assertion.

61. **Assertion**: Addition reaction of water to but-1-ene in acidic medium yields butan-1-ol
Reason: Addition of water in acidic medium proceeds through the formation of primary carbocation.

62. **Assertion**: p-nitrophenol is more acidic than phenol.
Reason: Nitro group helps in the stabilisation of the phenoxide ion by dispersal of negative charge due to resonance.

63. **Assertion**: IUPAC name of the compound $\text{CH}_3\text{CH}(-\text{O})\text{CH}_2\text{CH}_3$ is 2-Ethoxy-2-methylethane.
Reason: In IUPAC nomenclature, ether is regarded as hydrocarbon derivative in which a hydrogen atom is replaced by —OR or —OAr group [where $R = \text{alkyl group}$ and $\text{Ar} = \text{aryl group}$]

64. **Assertion**: Bond angle in ethers is slightly less than the tetrahedral angle.
Reason: There is a repulsion between the two bulky (—R) groups.

65. **Assertion**: Boiling points of alcohols and ethers are high.
Reason: They can form intermolecular hydrogen-bonding.
66. **Assertion**: Like bromination of benzene, bromination of phenol is also carried out in the presence of Lewis acid.

 Reason: Lewis acid polarises the bromine molecule.

67. **Assertion**: \(\alpha\)-Nitrophenol is less soluble in water than the \(m\)- and \(p\)-isomers.

 Reason: \(m\)- and \(p\)- Nitrophenols exist as associated molecules.

68. **Assertion**: Ethanol is a weaker acid than phenol.

 Reason: Sodium ethoxide may be prepared by the reaction of ethanol with aqueous NaOH.

69. **Assertion**: Phenol forms 2, 4, 6 – tribromophenol on treatment with \(\text{Br}_2\) in carbon disulphide at 273K.

 Reason: Bromine polarises in carbon disulphide.

70. **Assertion**: Phenols give \(\alpha\)- and \(p\)-nitrophenol on nitration with conc. \(\text{HNO}_3\) and \(\text{H}_2\text{SO}_4\) mixture.

 Reason: —OH group in phenol is \(\alpha\)-, \(p\)- directing.

VI. Long Answer Type

71. Write the mechanism of the reaction of HI with methoxybenzene.

72. (a) Name the starting material used in the industrial preparation of phenol.

 (b) Write complete reaction for the bromination of phenol in aqueous and non aqueous medium.

 (c) Explain why Lewis acid is not required in bromination of phenol?

73. How can phenol be converted to aspirin?

74. Explain a process in which a biocatalyst is used in industrial preparation of a compound known to you.
ANSWERS

I. Multiple Choice Questions (Type-I)

1. (iv) 2. (i) 3. (iii) 4. (iii) 5. (ii) 6. (iii)
7. (iii) 8. (i) 9. (iii) 10. (ii) 11. (i) 12. (ii)
13. (iv) 14. (ii) 15. (iii) 16. (i)

II. Multiple Choice Questions (Type-II)

17. (i), (ii), (iii) 18. (i), (ii), (iii) 19. (i), (iii), (iv) 20. (i), (iii)
21. (ii), (iii)

III. Short Answer Type

22. CH₃—CH—CH₂—OH

23. (A) 3-Ethyl-5-methylhexane-2,4-diol, (B) 1-Methoxy-3-nitrocyclohexane

24. 3-Methylpent-2-ene-1,2-diol

25. (i) Hydrogen bonding (ii) Size of alkyl/aryl group.

26. Alcohol is made unfit for drinking by mixing some copper sulphate and pyridine in it. This is called denatured alcohol.

27. CrO₃, pyridine and HCl. (Pyridinium chlorochromate)

28. 2-Chloroethanol, due to –I effect of chlorine atom.

29. CrO₃, Pyridine and HCl (Pyridinium chlorochromate)

30. Any strong oxidising agent e.g., acidified KMnO₄ or K₂Cr₂O₇.

31. Ortho nitrophenol. [Hint : intramolecular hydrogen bonding in o-nitrophenol and intermolecular hydrogen bonding in p-nitrophenol.]

32. o-Nitrophenol. [Hint : CH₃ group is electron releasing]

33. (2, 4, 6- Tribromophenol)

34. Increasing order of acidity:

o-cresol < phenol < o-nitrophenol
[**Hint** : In substituted phenols, the presence of electron withdrawing groups, enhance the acidic strength of phenol whereas, electron releasing groups decrease the acidic strength of phenol.]

35. Decreasing order of reactivity of sodium metal is :
 \[1° > 2° > 3°\]

36. [**Hint** : It gives phenol]

37. [**Hint** : \(H_2O > ROH > HC ≡ CH\)]

38. See NCERT textbook for Class XII

39. [**Hint** : Using Grignard reagent]

40. See NCERT textbook for Class XII

41. See NCERT textbook for Class XII

42. See NCERT textbook for Class XII

43. See NCERT textbook for Class XII

44. See NCERT textbook for Class XII

45. An alcohol reacts with conc. HCl and ZnCl₂ (Lucas reagent) to give carbocation. More stable is the carbocation, faster is the reaction.

46.

47. Phenol is more easily nitrated than benzene as the presence of—OH group in phenol increases the electron density at ortho and para positions in benzene ring by +R effect. The nitration, being an electrophilic substitution reaction is more facile where the electron density is more.

48. Phenoxide ion is more reactive than phenol towards electrophilic aromatic substitution and hence undergoes electrophilic substitution with carbondioxide which is a weak electrophile.

49. In phenol, C—O bond is less polar due to electron-withdrawing effect of benzene ring whereas in methanol, C—O bond is more polar due to electron-releasing effect of —CH₃ group.

50. In *tert*-butyl halides, elimination is favoured over substitution, so alkene is the only reaction product and ether is not formed.
167 Alcohols, Phenols and Ethers

51. See NCERT textbook for Class XII.
52. See NCERT textbook for Class XII.
53. See NCERT textbook for Class XII.
54. See NCERT textbook for Class XII.
55. This is due to the fact that—

(i) In phenol, conjugation of unshared electron pair over oxygen with aromatic ring results in partial double bond character in carbon-oxygen bond.

(ii) In phenol, oxygen is attached to a \(sp^2 \) hybridised carbon atom while in methanol, it is attached to a \(sp^3 \) hybridised carbon atom. The bond formed between oxygen and \(sp^2 \) hybridised carbon is more stable than that formed between oxygen and \(sp^3 \) hybridised carbon.

56. Increasing order of acidity is ethanol < water < phenol. The phenoxide ion obtained after the removal of a proton is stabilised by resonance whereas the ethoxide ion obtained after the removal of a proton is destabilised by ‘I’ effect of \(-C_2H_5\) group. Therefore phenol is stronger acid than ethanol. On the other hand ethanol is weaker acid than water because electron releasing \(-C_2H_5\) group in ethanol increases the electron density on oxygen and hence the polarity of O—H bond in ethanol decreases which results in the decreasing acidic strength. Hence acidic strength increases in the order given above.

IV. Matching Type

57. (i) — (d), (ii) — (c), (iii) — (f), (iv) — (a); (v) — (g), (vi) — (b)
58. (i) — (d), (ii) — (e), (iii) — (b), (iv) — (a)
59. (i) — (e), (ii) — (f), (iii) — (d), (iv) — (c), (v) — (a), (vi) — (b)
60. (i) — (d), (ii) — (a), (iii) — (f), (iv) — (e); (v) — (c), (vi) — (b)

V. Assertion and Reason Type

61. (ii) 62. (i) 63. (iv) 64. (iv) 65. (ii) 66. (iv)
67. (v) 68. (iii) 69. (ii) 70. (iv)

VI. Long Answer Type

71. Consult NCERT textbook for Class XII.
72. Consult NCERT textbook for Class XII.
73. Consult NCERT textbook for Class XII.
74. Consult NCERT textbook for Class XII.
I. Multiple Choice Questions (Type-I)

1. Addition of water to alkynes occurs in acidic medium and in the presence of Hg^{2+} ions as a catalyst. Which of the following products will be formed on addition of water to but-1-yne under these conditions.

 (i) \(\text{CH}_3\text{CH} = \text{CHCH}_2\text{C} - \text{H} \)
 (ii) \(\text{CH}_3\text{CH} = \text{CH}_2\text{C} - \text{CH}_3 \)
 (iii) \(\text{CH}_3\text{CH} = \text{C} - \text{OH} + \text{CO}_2 \)
 (iv) \(\text{CH}_3\text{C} - \text{OH} + \text{H} - \text{C} - \text{H} \)

2. Which of the following compounds is most reactive towards nucleophilic addition reactions?

 (i) \(\text{CH}_3\text{C} - \text{H} \)
 (ii) \(\text{CH}_3\text{C} - \text{CH}_3 \)
 (iii) \(\text{CH}=\text{C} - \text{H} \)
 (iv) \(\text{CH}=\text{C} - \text{CH}_3 \)

3. The correct order of increasing acidic strength is ____________.

 (i) Phenol < Ethanol < Chloroacetic acid < Acetic acid
 (ii) Ethanol < Phenol < Chloroacetic acid < Acetic acid
 (iii) Ethanol < Phenol < Acetic acid < Chloroacetic acid
 (iv) Chloroacetic acid < Acetic acid < Phenol < Ethanol
4. Compound Ph—O—C—Ph can be prepared by the reaction of _____________.
 (i) Phenol and benzoic acid in the presence of NaOH
 (ii) Phenol and benzoyl chloride in the presence of pyridine
 (iii) Phenol and benzoyl chloride in the presence of ZnCl₂
 (iv) Phenol and benzaldehyde in the presence of palladium

5. The reagent which does not react with both, acetone and benzaldehyde.
 (i) Sodium hydrogensulphite
 (ii) Phenyl hydrazine
 (iii) Fehling’s solution
 (iv) Grignard reagent

6. Cannizaro’s reaction is **not** given by _____________.
 (i) \[
 \begin{array}{c}
 \text{CHO} \\
 \text{CH}_3
 \end{array}
 \]
 (ii) \[
 \begin{array}{c}
 \text{CHO} \\
 \text{Ph}
 \end{array}
 \]
 (iii) H CHO
 (iv) CH₃CHO

7. Which product is formed when the compound \[
 \begin{array}{c}
 \text{CHO} \\
 \text{Ph}
 \end{array}
 \] is treated with concentrated aqueous KOH solution?
 (i) \[
 \begin{array}{c}
 \text{K}^- \quad \text{Ph—O—C—Ph}
 \end{array}
 \]
 (ii) \[
 \begin{array}{c}
 \text{Ph—C—O}^+ \\
 \text{CH}_2\text{OH}
 \end{array}
 \]
 (iii) \[
 \begin{array}{c}
 \text{K}^- \quad \text{Ph—C—O}^+ + \text{K}^- \quad \text{Ph—O—K}^+
 \end{array}
 \]
 (iv) \[
 \begin{array}{c}
 \text{Ph—C—O}^+ + \text{Ph—O}^- \quad \text{K}^+
 \end{array}
 \]
8. \[\text{CH}_3\text{C}==\text{CH} \xrightarrow{40\% \text{H}_2\text{SO}_4} \text{A} \xrightarrow{\text{Isomerisation}} \text{CH}_3\text{C}==\text{CH}_3 \]

Structure of ‘A’ and type of isomerism in the above reaction are respectively.

(i) Prop–1–en–2–ol, metamerism
(ii) Prop-1-en-1-ol, tautomerism
(iii) Prop-2-en-2-ol, geometrical isomerism
(iv) Prop-1-en-2-ol, tautomerism

9. Compounds A and C in the following reaction are _________.

\[
\text{CH}_3\text{CHO} \xrightarrow{(i) \text{CH}_2\text{MgBr}} (A) \xrightarrow{(ii) \text{H}_2\text{O}} \xrightarrow{(B)} \text{H}_2\text{SO}_4, \Delta \xrightarrow{(C)} \text{Hydroboration oxidation}
\]

(i) identical
(ii) positional isomers
(iii) functional isomers
(iv) optical isomers

10. Which is the most suitable reagent for the following conversion?

\[
\text{CH}_3\text{CH}==\text{CH}==\text{CH}_2 \xrightarrow{(i) \text{Tollen’s reagent}} \text{CH}_3\text{CH}==\text{CH}==\text{CH}_2\text{OH}
\]

(i) Tollen’s reagent
(ii) Benzoyl peroxide
(iii) I\(_2\) and NaOH solution
(iv) Sn and NaOH solution

11. Which of the following compounds will give butanone on oxidation with alkaline KMnO\(_4\) solution?

(i) Butan-1-ol
(ii) Butan-2-ol
(iii) Both of these
(iv) None of these

12. In Clemmensen Reduction carbonyl compound is treated with _________.

(i) Zinc amalgam + HCl
(ii) Sodium amalgam + HCl
(iii) Zinc amalgam + nitric acid
(iv) Sodium amalgam + HNO\(_3\)
II. Multiple Choice Questions (Type-II)

Note: In the following questions two or more options may be correct.

13. Which of the following compounds do not undergo aldol condensation?

(i) CH₃—CHO
(ii)

(iii) CH₃—C—CH₃
(iv) CH₃—C—CHO

14. Treatment of compound Ph—O—C—Ph with NaOH solution yields

(i) Phenol
(ii) Sodium phenoxide
(iii) Sodium benzoate
(iv) Benzophenone

15. Which of the following conversions can be carried out by Clemmensen Reduction?

(i) Benzaldehyde into benzyl alcohol
(ii) Cyclohexanone into cyclohexane
(iii) Benzoyl chloride into benzaldehyde
(iv) Benzophenone into diphenyl methane

16. Through which of the following reactions number of carbon atoms can be increased in the chain?

(i) Grignard reaction
(ii) Cannizaro’s reaction
(iii) Aldol condensation
(iv) HVZ reaction

17. Benzophenone can be obtained by ____________.

(i) Benzoyl chloride + Benzene + AlCl₃
(ii) Benzoyl chloride + Diphenyl cadmium
(iii) Benzoyl chloride + Phenyl magnesium chloride
(iv) Benzene + Carbon monoxide + ZnCl₂
18. Which of the following is the correct representation for intermediate of nucleophilic addition reaction to the given carbonyl compound (A):

(i) ![Structure](image1)
(ii) ![Structure](image2)
(iii) ![Structure](image3)
(iv) ![Structure](image4)

19. Why is there a large difference in the boiling points of butanal and butan-1-ol?

20. Write a test to differentiate between pentan-2-one and pentan-3-one.

21. Give the IUPAC names of the following compounds:

(i) ![Structure](image5)
(ii) ![Structure](image6)
(iii) ![Structure](image7)
(iv) ![Structure](image8)

22. Give the structure of the following compounds:
 (i) 4-Nitropropiophenone
 (ii) 2-Hydroxycyclopentanecarbaldehyde
 (iii) Phenyl acetaldehyde

23. Write IUPAC names of the following structures:

(i) ![Structure](image9)
(ii) ![Structure](image10)
(iii) ![Structure](image11)

24. Benzaldehyde can be obtained from benzal chloride. Write reactions for obtaining benzal chloride and then benzaldehyde from it.
25. Name the electrophile produced in the reaction of benzene with benzoyl chloride in the presence of anhydrous AlCl₃. Name the reaction also.

26. Oxidation of ketones involves carbon-carbon bond cleavage. Name the products formed on oxidation of 2, 5-dimethylhexan-3-one.

27. Arrange the following in decreasing order of their acidic strength and give reason for your answer.
 CH₃CH₂OH, CH₃COOH, CICH₂COOH, FCH₂COOH, C₆H₅CH₂COOH

28. What product will be formed on reaction of propanal with 2-methylpropanal in the presence of NaOH? What products will be formed? Write the name of the reaction also.

29. Compound ‘A’ was prepared by oxidation of compound ‘B’ with alkaline KMnO₄. Compound ‘A’ on reduction with lithium aluminium hydride gets converted back to compound ‘B’. When compound ‘A’ is heated with compound B in the presence of H₂SO₄, it produces fruity smell of compound C to which family the compounds ‘A’, ‘B’ and ‘C’ belong to?

30. Arrange the following in decreasing order of their acidic strength. Give explanation for the arrangement.
 C₆H₅COOH, FCH₂COOH, NO₂CH₂COOH

31. Alkenes (\(\overset{\text{C=C}}{\text{C}} \)) and carbonyl compounds (\(\overset{\text{C=O}}{\text{C}} \)), both contain a \(\pi \) bond but alkenes show electrophilic addition reactions whereas carbonyl compounds show nucleophilic addition reactions. Explain.

32. Carboxylic acids contain carbonyl group but do not show the nucleophilic addition reaction like aldehydes or ketones. Why?

33. Identify the compounds A, B and C in the following reaction.

\[
\text{CH}_3\text{Br} \xrightarrow{\text{Mg/ether}} (A) \xrightarrow{(i) \text{CO}_2/(ii) \text{Water}} (B) \xrightarrow{\text{CH}_3\text{OH/H}^+\Delta} (C)
\]

34. Why are carboxylic acids more acidic than alcohols or phenols although all of them have hydrogen atom attached to a oxygen atom (\(\text{—O—H} \))?

35. Complete the following reaction sequence.

\[
\text{CH}_2=\overset{\text{O}}{\text{C—CH}_3} \xrightarrow{(i) \text{CH}_3\text{MgBr)/(ii) H}_2\text{O}} (A) \xrightarrow{\text{Na metal/Ether}} (B) \xrightarrow{\text{CH}_3\text{Br}} (C)
\]

36. Ethylbenzene is generally prepared by acetylation of benzene followed by reduction and not by direct alkylation. Think of a possible reason.

37. Can Gatterman-Koch reaction be considered similar to Friedel Craft’s acylation? Discuss.
IV. Matching Type

Note: Match the items of Column I and Column II in the following questions.

38. Match the common names given in Column I with the IUPAC names given in Column II.

<table>
<thead>
<tr>
<th>Column I (Common names)</th>
<th>Column II (IUPAC names)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) Cinnamaldehyde</td>
<td>(a) Pentanal</td>
</tr>
<tr>
<td>(ii) Acetophenone</td>
<td>(b) Prop-2-enal</td>
</tr>
<tr>
<td>(iii) Valeraldehyde</td>
<td>(c) 4-Methylpent-3-en-2-one</td>
</tr>
<tr>
<td>(iv) Acrolein</td>
<td>(d) 3-Phenylprop-2-enal</td>
</tr>
<tr>
<td>(v) Mesityl oxide</td>
<td>(e) 1-Phenylethanone</td>
</tr>
</tbody>
</table>

39. Match the acids given in Column I with their correct IUPAC names given in Column II.

<table>
<thead>
<tr>
<th>Column I (Acids)</th>
<th>Column II (IUPAC names)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) Phthalic acid</td>
<td>(a) Hexane-1,6-dioic acid</td>
</tr>
<tr>
<td>(ii) Oxalic acid</td>
<td>(b) Benzene-1,2-dicarboxylic acid</td>
</tr>
<tr>
<td>(iii) Succinic acid</td>
<td>(c) Pentane-1,5-dioic acid</td>
</tr>
<tr>
<td>(iv) Adipic acid</td>
<td>(d) Butane-1,4-dioic acid</td>
</tr>
<tr>
<td>(v) Glutaric acid</td>
<td>(e) Ethane-1,2-dioic acid</td>
</tr>
</tbody>
</table>

40. Match the reactions given in Column I with the suitable reagents given in Column II.

<table>
<thead>
<tr>
<th>Column I (Reactions)</th>
<th>Column II (Reagents)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) Benzophenone → Diphenylmethane</td>
<td>(a) LiAlH₄</td>
</tr>
<tr>
<td>(ii) Benzaldehyde → 1-Phenylethanol</td>
<td>(b) DIBAL—H</td>
</tr>
<tr>
<td>(iii) Cyclohexanone → Cyclohexanol</td>
<td>(c) Zn(Hg)/Conc. HCl</td>
</tr>
<tr>
<td>(iv) Phenyl benzoate → Benzaldehyde</td>
<td>(d) CH₃MgBr</td>
</tr>
</tbody>
</table>

41. Match the example given in Column I with the name of the reaction in Column II.

<table>
<thead>
<tr>
<th>Column I (Example)</th>
<th>Column II (Reaction)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) CH₃—C—Cl + H₂ → CH₃—C—H</td>
<td>(a) Friedel Crafts acylation</td>
</tr>
</tbody>
</table>

Exemplar Problems, Chemistry 174
175 Aldehydes, Ketones and Carboxylic Acids

(ii) HVZ reaction

(iii) Aldol condensation

(iv) Cannizaro’s reaction

(v) Rosenmund’s reduction

(vi) Stephen’s reaction

V. Assertion and Reason Type

Note: In the following questions a statement of assertion followed by a statement of reason is given. Choose the correct answer out of the following choices.

(i) Assertion and reason both are correct and reason is correct explanation of assertion.

(ii) Assertion and reason both are wrong statements.

(iii) Assertion is correct statement but reason is wrong statement.

(iv) Assertion is wrong statement but reason is correct statement.

(v) Assertion and reason both are correct statements but reason is not correct explanation of assertion.

42. **Assertion**: Formaldehyde is a planar molecule.
Reason: It contains sp^2 hybridised carbon atom.

43. **Assertion**: Compounds containing —CHO group are easily oxidised to corresponding carboxylic acids.
Reason: Carboxylic acids can be reduced to alcohols by treatment with LiAlH$_4$.

175 Aldehydes, Ketones and Carboxylic Acids
44. **Assertion**: The α-hydrogen atom in carbonyl compounds is less acidic.
 Reason: The anion formed after the loss of α-hydrogen atom is resonance stabilised.

45. **Assertion**: Aromatic aldehydes and formaldehyde undergo Cannizaro reaction.
 Reason: Aromatic aldehydes are almost as reactive as formaldehyde.

46. **Assertion**: Aldehydes and ketones, both react with Tollen’s reagent to form silver mirror.
 Reason: Both, aldehydes and ketones contain a carbonyl group.

VI. Long Answer Type

47. An alkene ‘A’ (Mol. formula C₅H₁₀) on ozonolysis gives a mixture of two compounds ‘B’ and ‘C’. Compound ‘B’ gives positive Fehling’s test and also forms iodoform on treatment with I₂ and NaOH. Compound ‘C’ does not give Fehling’s test but forms iodoform. Identify the compounds A, B and C. Write the reaction for ozonolysis and formation of iodoform from B and C.

48. An aromatic compound ‘A’ (Molecular formula C₈H₈O) gives positive 2, 4-DNP test. It gives a yellow precipitate of compound ‘B’ on treatment with iodine and sodium hydroxide solution. Compound ‘A’ does not give Tollen’s or Fehling’s test. On drastic oxidation with potassium permanganate it forms a carboxylic acid ‘C’ (Molecular formula C₇H₆O₂), which is also formed along with the yellow compound in the above reaction. Identify A, B and C and write all the reactions involved.

49. Write down functional isomers of a carbonyl compound with molecular formula C₃H₆O. Which isomer will react faster with HCN and why? Explain the mechanism of the reaction also. Will the reaction lead to the completion with the conversion of whole reactant into product at reaction conditions? If a strong acid is added to the reaction mixture what will be the effect on concentration of the product and why?

50. When liquid ‘A’ is treated with a freshly prepared ammoniacal silver nitrate solution, it gives bright silver mirror. The liquid forms a white crystalline solid on treatment with sodium hydrogensulphite. Liquid ‘B’ also forms a white crystalline solid with sodium hydrogensulphite but it does not give test with ammoniacal silver nitrate. Which of the two liquids is aldehyde? Write the chemical equations of these reactions also.
I. Multiple Choice Questions (Type-I)

1. (ii) 2. (i) 3. (iii) 4. (ii) 5. (iii) 6. (iv)

II. Multiple Choice Questions (Type-II)

13. (ii), (iv); [Hint: in compounds (ii) and (iv) α-hydrogen is absent.]
14. (ii), (iii) 15. (ii), (iv) 16. (i), (iii) 17. (i), (ii) 18. (i), (ii)

III. Short Answer Type

19. [Hint: Butan-1-ol has higher boiling point due to intermolecular hydrogen bonding.]
20. [Hint: Iodoform test]
21. (i) 3-Phenylprop-2-enal (ii) Cyclohexanecarbaldehyde (iii) 3-oxopentanal (iv) But-2-enal

22. (i) \[
\begin{array}{c}
nitene \text{ ring} \\
\end{array}
\]
 (ii) \[
\begin{array}{c}
OH \\
CHO \\
\end{array}
\]
 (iii) \[
\begin{array}{c}
\text{CH}_3 \text{CHO} \\
\end{array}
\]

23. (i) Ethane-1,2-dial (ii) Benzene-1,4-dicarbaldehyde (iii) 3-Bromobenzaldehyde

24. See NCERT textbook for Class XII

25. \[
\begin{array}{c}
\text{C}_6\text{H}_5\text{CO} \text{ benzylium cation or C}_6\text{H}_5\text{C}^{+} \text{Cl}^{-} \text{AlCl}_3, \text{ Friedel Craft’s acylation reaction.}
\end{array}
\]

26. \[
\text{CH}_3 \text{O} \quad \text{CH}_3 \quad \text{CH}_3 \quad \text{CH}_3 \quad \text{[O]} \quad \text{CH}_3 \text{CH} = \text{COOH} + \text{CH}_3 \text{CH} \text{CH}_2 \text{COOH} \\
\text{(2-Methylpropanoic acid) (3-Methylbutanoic acid)}
\]

\[
\begin{array}{c}
\text{CH}_3 \text{COOH} + \text{HCOOH} \quad \text{CH}_3 \text{CH} = \text{C} \text{CH}_3 \\
\text{(Ethanoic acid) (Methanoic acid)} \\
\text{(Propan-2-one)}
\end{array}
\]
27. **Hint**: \(\text{FCH}_2\text{COOH} > \text{ClCH}_2\text{COOH} > \text{C}_6\text{H}_5\text{CH}_2\text{COOH} > \text{CH}_3\text{COOH} > \text{CH}_3\text{CH}_2\text{OH} \)

28. It is cross Aldol condensation

\[
\text{CH}_3\text{CH}_2\text{CHO} + \text{CH}_3\text{CHCH}_3 \rightarrow \text{CH}_3\text{CH}_2\text{CH} - \text{CH} = \text{CH} - \text{CHO} + \text{CH}_3\text{CH} = \text{CH} - \text{CHO} + \text{CH}_3\text{CH} - \text{CH} = \text{CH} - \text{CHO} + \text{CH}_3\text{CH} = \text{CH} - \text{CHO}
\]

29. ‘A’ is a carboxylic acid, ‘B’ is an alcohol and ‘C’ is an ester.

30. \(\text{NO}_2\text{CH}_2\text{COOH} > \text{FCH}_2\text{COOH} > \text{C}_6\text{H}_5\text{COOH} \)

[Hint]: electron withdrawing effect.

31. **[Hint]**: Carbon atom in carbonyl compounds acquires slight positive charge and is attacked by nucleophile.

32. **[Hint]**: Due to resonance as shown below the partial positive charge on carbonyl carbon atom is reduced.

\[
\begin{align*}
\text{C} & \text{C} \\
\text{H}_3\text{O}^- & \text{H} + \\
\text{C} & \text{O}^+ \\
\end{align*}
\]

33. \(A = \text{CH}_3\text{MgBr} \quad B = \text{CH}_3\text{COOH} \quad C = \text{CH}_3 - \text{C} - \text{O} - \text{CH}_3 \)

34. **Hint**: Compare the stability of anion formed after the loss of H\(^+\) ion. More stable the anion formed, more easy will be the dissociation of O—H bond, stronger will be the acids.

\[
\begin{align*}
\text{OH} & \quad \text{O}^-\text{Na}^+ & \quad \text{O}^-\text{CH}_3 \\
\text{CH}_3 & \quad \text{CH}_3 & \quad \text{CH}_3
\end{align*}
\]

35. **Hint**: \(A = \text{CH}_3 - \text{C} - \text{CH}_3 \quad B = \text{CH}_3 - \text{C} - \text{CH}_3 \quad C = \text{CH}_3 - \text{C} - \text{CH}_3 \)

IV. Matching Type

38. (i) — (d), (ii) — (e), (iii) — (a), (iv) — (b), (v) — (c)

39. (i) — (b), (ii) — (e), (iii) — (d), (iv) — (a), (v) — (c)

40. (i) — (c), (ii) — (d), (iii) — (a), (iv) — (b)

41. (i) — (e), (ii) — (d), (iii) — (a), (iv) — (b), (v) — (f), (vi) — (c)
V. Assertion and Reason Type

42. (i) 43. (v) 44. (iv) 45. (iii) 46. (iv)

VI. Long Answer Type

47. \[\text{CH}_3\text{CH}==\text{C}==\text{C}==\text{CH}_3, \text{CH}_3 \]

\[(\text{i}) \text{O}_3 \quad \text{H}_2\text{C}==\text{CHO} + \text{CH}==\text{C}==\text{CH}_3 \]

2-Methylbut-2-ene \hspace{1cm} \(\text{A} \) \hspace{1cm} \(\text{B} \) \hspace{1cm} \(\text{C} \)

Other isomers of ‘A’ will not give products corresponding to the given test.

48. **Hint**:

\[\text{O} \quad \text{C}==\text{CH}_3 \quad \text{C}==\text{N}==\text{NH} \quad \text{NO}_2 \quad \text{NO}_2 \]

\[(\text{A}) \quad \text{2,4-DNP} \quad \text{B} \quad \text{Yellow ppt} \quad \text{C} \]

\[\text{KMnO}_4/\text{H}^+ \]

\[\text{COOH} \]

49. \(\text{CH}_3\text{CH}_2\text{CHO} \quad \text{CH}_3\text{COCH}_3 \)

(I) (II)

- Compound I will react faster with HCN due to less steric hinderance and electronic reasons than II.
- No, It is a reversible reaction. Hence equilibrium is established.
- Addition of acid inhibits the reaction because the formation of °CN ions is prevented.

50. **Hint**: Liquid ‘A’
I. Multiple Choice Questions (Type-I)

1. Which of the following is a 3° amine?
 (i) 1-methylcyclohexylamine
 (ii) Triethylamine
 (iii) tert-butylamine
 (iv) N-methylaniline

2. The correct IUPAC name for \(\text{CH}_2=\text{CHCH}_2\text{NHCH}_3\) is
 (i) Allylmethylamine
 (ii) 2-amino-4-pentene
 (iii) 4-aminopent-1-ene
 (iv) N-methylprop-2-en-1-amine

3. Amongst the following, the strongest base in aqueous medium is __________.
 (i) \(\text{CH}_3\text{NH}_2\)
 (ii) \(\text{NCCH}_2\text{NH}_2\)
 (iii) \((\text{CH}_3)_2\text{NH}\)
 (iv) \(\text{C}_6\text{H}_5\text{NHCH}_3\)

4. Which of the following is the weakest Brønsted base?
 (i) \(\text{NH}_2\)
 (ii) \(\text{N—H}\)
5. Benzylamine may be alkylated as shown in the following equation:

\[C_6H_5CH_2NH_2 + R—X \rightarrow C_6H_5CH_2NHR \]

Which of the following alkylhalides is best suited for this reaction through S_N_1 mechanism?

(i) CH_3Br
(ii) C_6H_5Br
(iii) C_6H_5CH_2Br
(iv) C_2H_5Br

6. Which of the following reagents would not be a good choice for reducing an aryl nitro compound to an amine?

(i) H_2 (excess)/Pt
(ii) LiAlH_4 in ether
(iii) Fe and HCl
(iv) Sn and HCl

7. In order to prepare a 1° amine from an alkyl halide with simultaneous addition of one CH_2 group in the carbon chain, the reagent used as source of nitrogen is _________.

(i) Sodium amide, NaNH_2
(ii) Sodium azide, NaN_3
(iii) Potassium cyanide, KCN
(iv) Potassium phthalimide, C_6H_4(CO)N^-K^+

8. The source of nitrogen in Gabriel synthesis of amines is ____________.

(i) Sodium azide, NaN_3
(ii) Sodium nitrite, NaNO_2
(iii) Potassium cyanide, KCN
(iv) Potassium phthalimide, C_6H_4(CO)N^-K^+

9. Amongst the given set of reactants, the most appropriate for preparing 2° amine is _____.

(i) 2° R—Br + NH_3
(ii) 2° R—Br + NaCN followed by H_2/Pt
(iii) $1^\circ R–NH_2 + RCHO$ followed by H_2/Pt
(iv) $1^\circ R–Br$ (2 mol) + potassium phthalimide followed by H_3O^+/heat

10. The best reagent for converting 2-phenylpropanamide into 2-phenylpropanamine is _____.
 (i) excess H_2
 (ii) Br_2 in aqueous NaOH
 (iii) iodine in the presence of red phosphorus
 (iv) LiAlH_4 in ether

11. The best reagent for converting 2-phenylpropanamide into 1-phenylethanamine is ____.
 (i) excess H_2/Pt
 (ii) NaOH/Br_2
 (iii) NaBH_4/methanol
 (iv) LiAlH_4/ether

12. Hoffmann Bromamide Degradation reaction is shown by __________.
 (i) ArNH_2
 (ii) ArCONH_2
 (iii) ArNO_2
 (iv) ArCH_2NH_2

13. The correct increasing order of basic strength for the following compounds is
 ________.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NH$_2$</td>
<td>NH$_2$</td>
<td>NH$_2$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>II</td>
<td>III</td>
</tr>
</tbody>
</table>

 (i) II < III < I
 (ii) III < I < II
 (iii) III < II < I
 (iv) II < I < III

14. Methylamine reacts with HNO_2 to form __________.
 (i) $\text{CH}_3–O–\text{N}==\text{O}$
 (ii) $\text{CH}_3–\text{O}–\text{CH}_3$
15. The gas evolved when methylamine reacts with nitrous acid is _________.
 (i) NH₃
 (ii) N₂
 (iii) H₂
 (iv) C₂H₆

16. In the nitration of benzene using a mixture of conc. H₂SO₄ and conc. HNO₃, the species which initiates the reaction is _________.
 (i) NO₂
 (ii) NO⁺
 (iii) NO₂⁺
 (iv) NO₂⁻

17. Reduction of aromatic nitro compounds using Fe and HCl gives _________.
 (i) aromatic oxime
 (ii) aromatic hydrocarbon
 (iii) aromatic primary amine
 (iv) aromatic amide

18. The most reactive amine towards dilute hydrochloric acid is _________.
 (i) CH₃—NH₂
 (ii) H₂C—NH
 (iii) H₂C—N—CH₃
 (iv) [Diagram]

19. Acid anhydrides on reaction with primary amines give _________.
 (i) amide
 (ii) imide
 (iii) secondary amine
 (iv) imine
20. The reaction \(\text{ArN}_2\text{Cl} \xrightarrow{\text{Cu/HCl}} \text{ArCl} + \text{N}_2 + \text{CuCl} \) is named as ________.

 (i) Sandmeyer reaction
 (ii) Gatterman reaction
 (iii) Claisen reaction
 (iv) Carbylamine reaction

21. Best method for preparing primary amines from alkyl halides without changing the number of carbon atoms in the chain is

 (i) Hoffmann Bromamide reaction
 (ii) Gabriel phthalimide synthesis
 (iii) Sandmeyer reaction
 (iv) Reaction with \(\text{NH}_3 \)

22. Which of the following compound will not undergo azo coupling reaction with benzene diazonium chloride.

 (i) Aniline
 (ii) Phenol
 (iii) Anisole
 (iv) Nitrobenzene

23. Which of the following compounds is the weakest Brønsted base?

 (i) \[
 \begin{array}{c}
 \text{NH}_3 \\
 \text{C}_6\text{H}_5
 \end{array}
 \]

 (ii) \[
 \begin{array}{c}
 \text{NH}_2 \\
 \text{C}_6\text{H}_{11}
 \end{array}
 \]

 (iii) \[
 \begin{array}{c}
 \text{OH} \\
 \text{C}_6\text{H}_5
 \end{array}
 \]

 (iv) \[
 \begin{array}{c}
 \text{OH} \\
 \text{C}_6\text{H}_{11}
 \end{array}
 \]
24. Among the following amines, the strongest Brønsted base is ________.

(i) \(\text{NH}_3 \)

(ii) \(\text{NH}_3 \)

(iii) \(\text{H}_2\text{O} \)

(iv) \(\text{H}_2\text{O} \)

25. The correct decreasing order of basic strength of the following species is ________.

\(\text{H}_2\text{O}, \text{NH}_3, \text{OH}^-, \text{NH}_2^- \)

(i) \(\text{NH}_3 > \text{OH}^- > \text{NH}_3 > \text{H}_2\text{O} \)

(ii) \(\text{OH}^- > \text{NH}_2^- > \text{H}_2\text{O} > \text{NH}_3 \)

(iii) \(\text{NH}_3 > \text{H}_2\text{O} > \text{NH}_2^- > \text{OH}^- \)

(iv) \(\text{H}_2\text{O} > \text{NH}_3 > \text{OH}^- > \text{NH}_2^- \)

26. Which of the following should be most volatile?

(I) \(\text{CH}_3\text{CH}_2\text{CH}_2\text{NH}_2 \) (II) \(\text{(CH}_3)_3\text{N} \) (III) \(\text{CH}_3\text{CH}_2\text{NH} \) (IV) \(\text{CH}_3\text{CH}_2\text{CH}_3 \)

(i) II

(ii) IV

(iii) I

(iv) III

27. Which of the following methods of preparation of amines will give same number of carbon atoms in the chain of amines as in the reactant?

(i) Reaction of nitrite with \(\text{LiAlH}_4 \).

(ii) Reaction of amide with \(\text{LiAlH}_4 \) followed by treatment with water.

(iii) Heating alkylhalide with potassium salt of phthalimide followed by hydrolysis.

(iv) Treatment of amide with bromine in aqueous solution of sodium hydroxide.
II. Multiple Choice Questions (Type-II)

Note: In the following questions two or more options may be correct.

28. Which of the following cannot be prepared by Sandmeyer’s reaction?
 (i) Chlorobenzene
 (ii) Bromobenzene
 (iii) Iodobenzene
 (iv) Fluorobenzene

29. Reduction of nitrobenzene by which of the following reagent gives aniline?
 (i) Sn/HCl
 (ii) Fe/HCl
 (iii) \(\text{H}_2\text{Pd} \)
 (iv) Sn/N\(\text{H}_2\text{OH} \)

30. Which of the following species are involved in the carbylamine test?
 (i) \(\text{R—NC} \)
 (ii) \(\text{CHCl}_3 \)
 (iii) \(\text{COCl}_2 \)
 (iv) \(\text{NaNO}_2 + \text{HCl} \)

31. The reagents that can be used to convert benzenediazonium chloride to benzene are __________.
 (i) \(\text{SnCl}_2/\text{HCl} \)
 (ii) \(\text{CH}_3\text{CH}_2\text{OH} \)
 (iii) \(\text{H}_3\text{PO}_2 \)
 (iv) \(\text{LiAlH}_4 \)

32. The product of the following reaction is __________.

\[
\begin{align*}
\text{NHCOCH}_3 + \text{Br}_2/\text{CH}_3\text{COOH} & \rightarrow \\
\text{NHCOCH}_3 + \text{Br} & \\
\end{align*}
\]
33. Arenium ion involved in the bromination of aniline is ________.
34. Which of the following amines can be prepared by Gabriel synthesis.
 (i) Isobutyl amine
 (ii) 2-Phenylethylamine
 (iii) N-methylbenzylamine
 (iv) Aniline

35. Which of the following reactions are correct?

 (i) \[
 \begin{array}{c}
 \text{H} \\
 \text{Cl} + 2\text{NH}_3
 \end{array}
 \rightarrow
 \begin{array}{c}
 \text{H} \\
 \text{NH}_2 + \text{NH}_4\text{Cl}
 \end{array}
 \]

 (ii) \[
 \begin{array}{c}
 \text{Cl}
 \end{array}
 \xrightarrow{\text{aq. KOH}}
 \]

 (iii) \[
 \begin{array}{c}
 \text{Cl}
 \end{array}
 \xrightarrow{\text{alc. KOH}}
 \]

 (iv) \[
 \begin{array}{c}
 \text{NH}_2 + \text{HNO}_2
 \end{array}
 \xrightarrow{0^\circ \text{C}}
 \begin{array}{c}
 \text{OH}
 \end{array}
 \]

36. Under which of the following reaction conditions, aniline gives \(p \)-nitro derivative as the major product?
 (i) Acetyl chloride/pyridine followed by reaction with conc. \(\text{H}_2\text{SO}_4 \) + conc. \(\text{HNO}_3 \).
 (ii) Acetic anhydride/pyridine followed by conc. \(\text{H}_2\text{SO}_4 \) + conc. \(\text{HNO}_3 \).
 (iii) Dil. HCl followed by reaction with conc. \(\text{H}_2\text{SO}_4 \) + conc. \(\text{HNO}_3 \).
 (iv) Reaction with conc. \(\text{HNO}_3 \) + conc.\(\text{H}_2\text{SO}_4 \).

37. Which of the following reactions belong to electrophilic aromatic substitution?
 (i) Bromination of acetanilide
 (ii) Coupling reaction of aryldiazonium salts
 (iii) Diazotisation of aniline
 (iv) Acylation of aniline

III. Short Answer Type

38. What is the role of \(\text{HNO}_3 \) in the nitrating mixture used for nitration of benzene?

39. Why is \(\text{NH}_2 \) group of aniline acetylated before carrying out nitration?

40. What is the product when \(\text{C}_6\text{H}_5\text{CH}_2\text{NH}_2 \) reacts with \(\text{HNO}_2 \)?
41. What is the best reagent to convert nitrile to primary amine?

42. Give the structure of ‘A’ in the following reaction.

\[
\text{CH}_3
\begin{array}{c}
\text{NO}_2 \\
\text{NH}_2
\end{array}
\xrightarrow{(i) \text{NaNO}_2 + \text{HCl, 273-278K}}
\xrightarrow{(ii) \text{H}_3\text{PO}_4, \text{H}_2\text{O}} \rightarrow \text{A}
\]

43. What is Hinsberg reagent?

44. Why is benzene diazonium chloride not stored and is used immediately after its preparation?

45. Why does acetylation of —NH\textsubscript{2} group of aniline reduce its activating effect?

46. Explain why MeNH\textsubscript{2} is stronger base than MeOH?

47. What is the role of pyridine in the acylation reaction of amines?

48. Under what reaction conditions (acidic/basic), the coupling reaction of aryldiazonium chloride with aniline is carried out?

49. Predict the product of reaction of aniline with bromine in non-polar solvent such as CS\textsubscript{2}.

50. Arrange the following compounds in increasing order of dipole moment.
CH\textsubscript{3}CH\textsubscript{2}CH\textsubscript{3}, CH\textsubscript{3}CH\textsubscript{2}NH\textsubscript{2}, CH\textsubscript{3}CH\textsubscript{2}OH

51. What is the structure and IUPAC name of the compound, allyl amine?

52. Write down the IUPAC name of \[
\text{N(CH}_3\text{)}_2
\]

53. A compound Z with molecular formula C\textsubscript{3}H\textsubscript{9}N reacts with C\textsubscript{6}H\textsubscript{5}SO\textsubscript{2}Cl to give a solid, insoluble in alkali. Identify Z.

54. A primary amine, RNH\textsubscript{2} can be reacted with CH\textsubscript{3}—X to get secondary amine, R—NHCH\textsubscript{3} but the only disadvantage is that 3o amine and quaternary ammonium salts are also obtained as side products. Can you suggest a method where RNH\textsubscript{2} forms only 2o amine?

55. Complete the following reaction.

\[
\text{OH}
\xrightarrow{\text{ArN}_2\text{Cl}^-}
\text{OH}
\]
56. Why is aniline soluble in aqueous HCl?

57. Suggest a route by which the following conversion can be accomplished.

58. Identify A and B in the following reaction.

59. How will you carry out the following conversions?
 (i) toluene \rightarrow p-toluidine
 (ii) p-toluidine diazonium chloride \rightarrow p-toluic acid

60. Write following conversions:
 (i) nitrobenzene \rightarrow acetanilide
 (ii) acetanilide \rightarrow p-nitroaniline

61. A solution contains 1 g mol. each of p-toluene diazonium chloride and p-nitrophenyl diazonium chloride. To this 1 g mol. of alkaline solution of phenol is added. Predict the major product. Explain your answer.

62. How will you bring out the following conversion?

63. How will you carry out the following conversion?

Exemplar Problems, Chemistry
64. How will you carry out the following conversion?

\[
\begin{array}{c}
\text{NH}_2 \\
\text{Ph} \\
\end{array} \xrightarrow{\text{NO}_2}
\begin{array}{c}
\text{NO}_2 \\
\text{Ph} \\
\end{array}
\]

65. How will you carry out the following conversions?

(i)

\[
\begin{array}{c}
\text{NH}_2 \\
\text{Ph} \\
\end{array} \xrightarrow{\text{Br}}
\begin{array}{c}
\text{Br} \\
\text{Ph} \\
\end{array}
\]

(ii)

\[
\begin{array}{c}
\text{NH}_2 \\
\text{Ph} \\
\end{array} \xrightarrow{\text{Br}}
\begin{array}{c}
\text{Br} \\
\text{Ph} \\
\end{array}
\]

IV. Matching Type

Note: Match the items of Column I and Column II in the following questions.

66. Match the reactions given in Column I with the statements given in Column II.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) Ammonolysis</td>
<td>(a) Amine with lesser number of carbon atoms</td>
</tr>
<tr>
<td>(ii) Gabriel phthalimide synthesis</td>
<td>(b) Detection test for primary amines.</td>
</tr>
<tr>
<td>(iii) Hoffmann Bromamide reaction</td>
<td>(c) Reaction of phthalimide with KOH and R—X</td>
</tr>
<tr>
<td>(iv) Carbylamine reaction</td>
<td>(d) Reaction of alkylhalides with NH₃</td>
</tr>
</tbody>
</table>

67. Match the compounds given in Column I with the items given in Column II.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) Benzene sulphonyl chloride</td>
<td>(a) Zwitter ion</td>
</tr>
<tr>
<td>(ii) Sulphanilic acid</td>
<td>(b) Hinsberg reagent</td>
</tr>
<tr>
<td>(iii) Alkyl diazonium salts</td>
<td>(c) Dyes</td>
</tr>
<tr>
<td>(iv) Aryl diazonium salts</td>
<td>(d) Conversion to alcohols</td>
</tr>
</tbody>
</table>
V. Assertion and Reason Type

Note: In the following questions a statement of assertion followed by a statement of reason is given. Choose the correct answer out of the following choices.

(i) Both assertion and reason are wrong.
(ii) Both assertion and reason are correct statements but reason is not correct explanation of assertion.
(iii) Assertion is correct statement but reason is wrong statement.
(iv) Both assertion and reason are correct statements and reason is correct explanation of assertion.
(v) Assertion is wrong statement but reason is correct statement.

68. **Assertion**: Acylation of amines gives a monosubstituted product whereas alkylation of amines gives polysubstituted product.

 Reason: Acyl group sterically hinders the approach of further acyl groups.

69. **Assertion**: Hoffmann’s bromamide reaction is given by primary amines.

 Reason: Primary amines are more basic than secondary amines.

70. **Assertion**: N-Ethylbenzene sulphonamide is soluble in alkali.

 Reason: Hydrogen attached to nitrogen in sulphonamide is strongly acidic.

71. **Assertion**: N, N-Diethylbenzene sulphonamide is insoluble in alkali.

 Reason: Sulphonyl group attached to nitrogen atom is strong electron withdrawing group.

72. **Assertion**: Only a small amount of HCl is required in the reduction of nitro compounds with iron scrap and HCl in the presence of steam.

 Reason: FeCl$_2$ formed gets hydrolysed to release HCl during the reaction.

73. **Assertion**: Aromatic 1° amines can be prepared by Gabriel Phthalimide Synthesis.

 Reason: Aryl halides undergo nucleophilic substitution with anion formed by phthalimide.

74. **Assertion**: Acetanilide is less basic than aniline.

 Reason: Acetylation of aniline results in decrease of electron density on nitrogen.
VI. Long Answer Type

75. A hydrocarbon ‘A’, \((C_4H_8) \) on reaction with HCl gives a compound ‘B’, \((C_4H_9Cl) \), which on reaction with 1 mol of \(NH_3 \) gives compound ‘C’, \((C_4H_{11}N) \). On reacting with \(NaNO_2 \) and HCl followed by treatment with water, compound ‘C’ yields an optically active alcohol, ‘D’. Ozonolysis of ‘A’ gives 2 mols of acetaldehyde. Identify compounds ‘A’ to ‘D’. Explain the reactions involved.

76. A colourless substance ‘A’ \((C_6H_7N) \) is sparingly soluble in water and gives a water soluble compound ‘B’ on treating with mineral acid. On reacting with CHCl_3 and alcoholic potash ‘A’ produces an obnoxious smell due to the formation of compound ‘C’. Reaction of ‘A’ with benzenesulphonyl chloride gives compound ‘D’ which is soluble in alkali. With \(NaNO_2 \) and HCl, ‘A’ forms compound ‘E’ which reacts with phenol in alkaline medium to give an orange dye ‘F’. Identify compounds ‘A’ to ‘F’.

77. Predict the reagent or the product in the following reaction sequence.
ANSWERS

I. Multiple Choice Questions (Type-I)

1. (ii) 2. (iv) 3. (iii) 4. (i) 5. (iii) 6. (ii)
25. (i) 26. (ii) 27. (iii)

II. Multiple Choice Questions (Type-II)

28. (iii), (iv) 29. (i), (ii), (iii) 30. (i), (ii) 31. (ii), (iii)
32. (i), (ii) 33. (i), (ii), (iii) 34. (i), (ii) 35. (i), (iii)
36. (i), (ii) 37. (i), (ii)

III. Short Answer Type

38. \(\text{HNO}_3 \) acts as a base in the nitrating mixture and provides the electrophile, \(\text{NO}_2^+ \).
39. See NCERT textbook for Class XII.
40. \(\text{C}_6\text{H}_5\text{CH}_2\text{OH} \)
41. Reduction of nitriles with sodium/alcohol or LiAlH_4 gives primary amine.
42. \[\text{CH}_3 \]
 \[\text{NO}_2 \]
43. Benzene sulphonylchloride.
44. Benzene diazonium chloride is very unstable.
45. See NCERT textbook for Class XII.
46. Nitrogen is less electronegative than oxygen therefore lone pair of electrons on nitrogen is readily available for donation. Hence, MeNH_2 is more basic than MeOH.
47. Pyridine and other bases are used to remove the side product i.e. HCl from the reaction mixture.
48. Reaction is done in mild basic conditions.
49. A mixture of 2-bromoaniline and 4-bromoaniline is formed.
50. \(\text{CH}_3\text{CH}_2\text{CH}_3 < \text{CH}_3\text{CH}_2\text{NH}_2 < \text{CH}_3\text{CH}_2\text{OH} \)

51. \(\text{CH}_2=\text{CH—CH}_2—\text{NH}_2 \), prop-2-en-1-amine

52. N, N-Dimethylbenzenamine

53. Z is an aliphatic amine which gives a solid insoluble in base. This implies that reaction with \(\text{C}_6\text{H}_5\text{SO}_2\text{Cl} \) must give a product without any replaceable hydrogen attached to nitrogen. In other words, the amine must be a secondary amine. i.e. Z is ethylmethylamine.

54. \[
\text{CH}_3\text{NH} + \text{C}_6\text{H}_5\text{SO}_2\text{Cl} \rightarrow \text{CH}_3\text{N—SO}_2\text{C}_6\text{H}_5
\]
N-Ethyl-N-methyl benzene sulphonamide

54. \[
\text{RNH}_2 \xrightarrow{\text{KOH/CHCl}_3} \text{RNC} \xrightarrow{\text{H}_2/\text{Pd}} \text{RNHCH}_3
\]
Carbylamine reaction is shown by 1° amine only which results in the replacement of two hydrogen atoms attached to nitrogen atom of \(\text{NH}_2 \) group by one carbon atom. On catalytic reduction the isocyanide will give a secondary amine with one methyl group.

55. The reaction exhibits azo-coupling of phenols. In mild alkaline conditions phenol moiety participates in the azo-coupling and para position of phenol is occupied.
56. Aniline forms the salt anilinium chloride which is water soluble.

\[
\begin{align*}
\text{NH}_4^+ & \quad \text{(A)} \\
\text{Ph} & \quad \text{(B)} \\
\end{align*}
\]

(A) Aniline (Colourless liquid, sparingly soluble in water)

(B) Anilinium chloride (Water soluble salt)

57.

\[
\begin{align*}
\text{O} & \quad \text{NH}_2 \\
\text{Br}_2/\text{KOH} & \quad \text{CHCl}_3/\text{KOH} \\
\text{H}_2/\text{Pd} & \quad \text{NH-CH}_3 \\
\end{align*}
\]

58.

\[
\begin{align*}
\text{Cl} & \quad \text{CN} \\
\text{KCN} & \quad \text{H}_2/\text{Pd} \\
\end{align*}
\]

(A)

(B)

59.

\[
\begin{align*}
\text{CH}_3 & \quad \text{HNO}_3/\text{H}_2\text{SO}_4 \\
\text{Fe}/\text{HCl} & \quad \text{NH}_2 \\
\end{align*}
\]

Toluene

p-Toluidine
60. This reaction is an example of electrophilic aromatic substitution. In alkaline medium, phenol generates phenoxide ion which is more electron rich than phenol and hence more reactive for electrophilic attack. The electrophile in this reaction is aryldiazonium cation. Stronger the electrophile faster is the reaction. \(p \)-Nitrophenyldiazonium cation is a stronger electrophile than \(p \)-toluene diazonium cation. Therefore, it couples preferentially with phenol.

61. This reaction is an example of electrophilic aromatic substitution. In alkaline medium, phenol generates phenoxide ion which is more electron rich than phenol and hence more reactive for electrophilic attack. The electrophile in this reaction is aryldiazonium cation. Stronger the electrophile faster is the reaction. \(p \)-Nitrophenyldiazonium cation is a stronger electrophile than \(p \)-toluene diazonium cation. Therefore, it couples preferentially with phenol.
65. (i)

![Chemical reaction diagram]

(ii) Conversion (A) given below is same as in part (i) given above after that reaction (B) can be carried out.

![Chemical reaction diagram]

IV. Matching Type

66. (i) → (d) (ii) → (c) (iii) → (a) (iv) → (b)
67. (i) → (b) (ii) → (a) (iii) → (d) (iv) → (c)

V. Assertion and Reason Type

68. (iii) 69. (iii) 70. (iv) 71. (ii) 72. (iv) 73. (i) 74. (iv)
VI. Long Answer Type

75. (A) **Ozonolysis** \(\xrightarrow{\text{HCl}} \) 2CH₃CHO

Addition of HCl has occurred on ‘A’. This implies ‘A’ is an alkene.

\(\text{C}_3\text{H}_6 \xrightarrow{\text{HCl}} \text{C}_3\text{H}_5\text{Cl} \)

(B)

Cl in compound ‘B’ is substituted by NH₂ to give ‘C’.

\(\text{C}_3\text{H}_5\text{Cl} \xrightarrow{\text{NH}_3} \text{C}_3\text{H}_5\text{N} \)

(C)

\(\text{C}_3\text{H}_5\text{N} \xrightarrow{\text{NaNO}_2/\text{HCl}} \text{CH}_3\text{CH}_3 \)

(D)

‘C’ gives a diazonium salt with NaNO₂/HCl that liberates N₂ to give optically active alcohol. This means that ‘C’ is an aliphatic amine. Number of carbon atoms in amine is same as in compound ‘A’.

Since products of ozonolysis of compound ‘A’ are CH₃—CH == O and O == CH—CH₃. The compound ‘A’ is CH₃—CH==CH—CH₃.

On the basis of structure of ‘A’ reactions can be explained as follows:

\[\begin{align*}
\text{CH}_3\text{—CH==CH—CH}_3 \xrightarrow{\text{HCl}} & \quad \text{CH}_3\text{—CH==CH—CH}_3 \quad \text{Cl} \\
\text{CH}_3\text{—CH==CH—CH}_3 \xrightarrow{\text{NH}_3} & \quad \text{CH}_3\text{—CH==CH—CH}_3 \quad \text{NH}_3 \\
\text{CH}_3\text{—CH==CH—CH}_3 \xrightarrow{\text{NaNO}_2/\text{HCl}} & \quad \text{CH}_3\text{—CH==CH—CH}_3 \\
\end{align*} \]

76. \(\text{NH}_2 \xrightarrow{\text{HCl}} \text{NH}_4\text{Cl}^- \)

Aniline (Colourless liquid, sparingly soluble in water)

Anilinium chloride (Water soluble salt)
Amines

1. Sn-HCl

\[\text{NH}_2 + \text{CHCl}_3 + \text{KOH} \rightarrow \text{NH}_2 + 3\text{KCl} + 3\text{H}_2\text{O} \]

Benzene isonitrile

2. \[\text{NH}_2 + \text{SO}_2\text{Cl} \rightarrow \text{NH-SO}_2\text{Cl} \]

N-Phenylbenzenesulphonamide (soluble in alkali)

3. \[\text{NH}_2 + \text{NaNO}_2/\text{HCl} \rightarrow \text{NH}_3^+ + \text{Cl}^- \]

4. \[\text{N}^+ = \text{N}^- + \text{OH}^- \rightarrow \text{N}^+ = \text{N}^- \text{OH} \]

Orange dye

77. 1. Sn-HCl
2. \[\text{CH}_3\text{NO}_2\text{NHCOCH}_3 \]
3. \[\text{H}_2\text{O}/\text{H}^+ \]
4. \[\text{CH}_3\text{NO}_2\text{N}^+ \text{Cl}^- \]
5. \[\text{H}_3\text{PO}_4/\text{H}_2\text{O} \]
I. Multiple Choice Questions (Type-I)

1. Glycogen is a branched chain polymer of α-D-glucose units in which chain is formed by C1—C4 glycosidic linkage whereas branching occurs by the formation of C1-C6 glycosidic linkage. Structure of glycogen is similar to _________.
 (i) Amylose
 (ii) Amylopectin
 (iii) Cellulose
 (iv) Glucose

2. Which of the following polymer is stored in the liver of animals?
 (i) Amylose
 (ii) Cellulose
 (iii) Amylopectin
 (iv) Glycogen

3. Sucrose (cane sugar) is a disaccharide. One molecule of sucrose on hydrolysis gives _________.
 (i) 2 molecules of glucose
 (ii) 2 molecules of glucose + 1 molecule of fructose
 (iii) 1 molecule of glucose + 1 molecule of fructose
 (iv) 2 molecules of fructose

4. Which of the following pairs represents anomers?
 (i)
 \[
 \begin{align*}
 &\text{CHO} \\
 &H\quad\text{OH} \\
 &\text{CHO} \\
 &\text{HO}\quad\text{H} \\
 &\text{HO}\quad\text{H} \\
 &\text{H}\quad\text{OH} \\
 &\text{H}\quad\text{OH} \\
 &\text{CH}_2\text{OH} \\
 &\text{CH}_2\text{OH}
 \end{align*}
 \]
5. Proteins are found to have two different types of secondary structures viz. \(\alpha \)-helix and \(\beta \)-pleated sheet structure. \(\alpha \)-helix structure of protein is stabilised by:

(i) Peptide bonds
(ii) van der Waals forces
(iii) Hydrogen bonds
(iv) Dipole-dipole interactions

6. In disaccharides, if the reducing groups of monosaccharides i.e. aldehydic or ketonic groups are bonded, these are non-reducing sugars. Which of the following disaccharide is a non-reducing sugar?
7. Which of the following acids is a vitamin?
 (i) Aspartic acid
 (ii) Ascorbic acid
 (iii) Adipic acid
 (iv) Saccharic acid

8. Dinucleotide is obtained by joining two nucleotides together by phosphodiester linkage. Between which carbon atoms of pentose sugars of nucleotides are these linkages present?
 (i) 5’ and 3’
 (ii) 1’ and 5’
 (iii) 5’ and 5’
 (iv) 3’ and 3’

9. Nucleic acids are the polymers of ____________.
 (i) Nucleosides
 (ii) Nucleotides
 (iii) Bases
 (iv) Sugars

10. Which of the following statements is not true about glucose?
 (i) It is an aldohexose.
 (ii) On heating with HI it forms n-hexane.
 (iii) It is present in furanose form.
 (iv) It does not give 2,4-DNP test.
11. Each polypeptide in a protein has amino acids linked with each other in a specific sequence. This sequence of amino acids is said to be ____________.

 (i) primary structure of proteins.
 (ii) secondary structure of proteins.
 (iii) tertiary structure of proteins.
 (iv) quaternary structure of proteins.

12. DNA and RNA contain four bases each. Which of the following bases is not present in RNA?
 (i) Adenine
 (ii) Uracil
 (iii) Thymine
 (iv) Cytosine

13. Which of the following B group vitamins can be stored in our body?
 (i) Vitamin B₁
 (ii) Vitamin B₂
 (iii) Vitamin B₆
 (iv) Vitamin B₁₂

14. Which of the following bases is not present in DNA?
 (i) Adenine
 (ii) Thymine
 (iii) Cytosine
 (iv) Uracil

15. Three cyclic structures of monosaccharides are given below which of these are anomers.

 ![Structures](image)

 (i) I and II
 (ii) II and III
 (iii) I and III
 (iv) III is anomer of I and II
16. Which of the following reactions of glucose can be explained only by its cyclic structure?
 (i) Glucose forms pentaacetate.
 (ii) Glucose reacts with hydroxylamine to form an oxime.
 (iii) Pentaacetate of glucose does not react with hydroxylamine.
 (iv) Glucose is oxidised by nitric acid to gluconic acid.

17. Optical rotations of some compounds along with their structures are given below which of them have D configuration.

 ![Optical Rotations and Structures]

 (i) I, II, III
 (ii) II, III
 (iii) I, II
 (iv) III

18. Structure of a disaccharide formed by glucose and fructose is given below. Identify anomeric carbon atoms in monosaccharide units.

 ![Disaccharide Structure]

 (i) ‘a’ carbon of glucose and ‘a’ carbon of fructose.
 (ii) ‘a’ carbon of glucose and ‘e’ carbon of fructose.
 (iii) ‘a’ carbon of glucose and ‘b’ carbon of fructose.
 (iv) ‘f’ carbon of glucose and ‘f’ carbon of fructose.

19. Three structures are given below in which two glucose units are linked. Which of these linkages between glucose units are between C1 and C4 and which linkages are between C1 and C6?
II. Multiple Choice Questions (Type-II)

Note: In the following questions two or more options may be correct.

20. Carbohydrates are classified on the basis of their behaviour on hydrolysis and also as reducing or non-reducing sugar. Sucrose is a _________.
 (i) monosaccharide
 (ii) disaccharide
 (iii) reducing sugar
 (iv) non-reducing sugar

21. Proteins can be classified into two types on the basis of their molecular shape i.e., fibrous proteins and globular proteins. Examples of globular proteins are:
 (i) Insulin
(ii) Keratin
(iii) Albumin
(iv) Myosin

22. Which of the following carbohydrates are branched polymer of glucose?
(i) Amylose
(ii) Amylopectin
(iii) Cellulose
(iv) Glycogen

23. Amino acids are classified as acidic, basic or neutral depending upon the relative number of amino and carboxyl groups in their molecule. Which of the following are acidic?
(i) (CH₂)₃CH—CH—COOH
(ii) HOOC—CH₂—CH₂—CH—COOH
(iii) H₂N—CH₂—CH₂—CH—COOH
(iv) HOOC—CH₂—CH—COOH

24. Lysine, H₂N—(CH₃)₄—CH—COOH is _______________.
(i) α-Amino acid
(ii) Basic amino acid
(iii) Amino acid synthesised in body
(iv) β-Amino acid

25. Which of the following monosaccharides are present as five membered cyclic structure (furanose structure)?
(i) Ribose
(ii) Glucose
(iii) Fructose
(iv) Galactose
26. In fibrous proteins, polypeptide chains are held together by ___________.
 (i) van der Waals forces
 (ii) disulphide linkage
 (iii) electrostatic forces of attraction
 (iv) hydrogen bonds

27. Which of the following are purine bases?
 (i) Guanine
 (ii) Adenine
 (iii) Thymine
 (iv) Uracil

28. Which of the following terms are correct about enzyme?
 (i) Proteins
 (ii) Dinucleotides
 (iii) Nucleic acids
 (iv) Biocatalysts

III. Short Answer Type

29. Name the sugar present in milk. How many monosaccharide units are present in it? What are such oligosaccharides called?

30. How do you explain the presence of all the six carbon atoms in glucose in a straight chain?

31. In nucleoside a base is attached at 1′ position of sugar moiety. Nucleotide is formed by linking of phosphoric acid unit to the sugar unit of nucleoside. At which position of sugar unit is the phosphoric acid linked in a nucleoside to give a nucleotide?

32. Name the linkage connecting monosaccharide units in polysaccharides.

33. Under what conditions glucose is converted to gluconic and saccharic acid?

34. Monosaccharides contain carbonyl group hence are classified, as aldose or ketose. The number of carbon atoms present in the monosaccharide molecule are also considered for classification. In which class of monosaccharide will you place fructose?

35. The letters ‘D’ or ‘L’ before the name of a stereoisomer of a compound indicate the correlation of configuration of that particular stereoisomer. This refers to their relation with one of the isomers of glyceraldehyde. Predict whether the following compound has ‘D’ or ‘L’ configuration.
36. Aldopentoses named as ribose and 2-deoxyribose are found in nucleic acids. What is their relative configuration?

37. Which sugar is called invert sugar? Why is it called so?

38. Amino acids can be classified as α-, β-, γ-, δ- and so on depending upon the relative position of amino group with respect to carboxyl group. Which type of amino acids form polypeptide chain in proteins?

39. α-Helix is a secondary structure of proteins formed by twisting of polypeptide chain into right handed screw like structures. Which type of interactions are responsible for making the α-helix structure stable?

40. Some enzymes are named after the reaction, where they are used. What name is given to the class of enzymes which catalyse the oxidation of one substrate with simultaneous reduction of another substrate.

41. During curdling of milk, what happens to sugar present in it?

42. How do you explain the presence of five —OH groups in glucose molecule?

43. Why does compound (A) given below not form an oxime?

44. Why must vitamin C be supplied regularly in diet?

45. Sucrose is dextrorotatory but the mixture obtained after hydrolysis is laevorotatory. Explain.

46. Amino acids behave like salts rather than simple amines or carboxylic acids. Explain.

47. Structures of glycine and alanine are given below. Show the peptide linkage in glycylalanine.
Protein found in a biological system with a unique three-dimensional structure and biological activity is called a native protein. When a protein in its native form is subjected to a physical change like change in temperature or a chemical change like, change in pH, denaturation of protein takes place. Explain the cause.

Activation energy for the acid catalysed hydrolysis of sucrose is 6.22 kJ mol\(^{-1}\), while the activation energy is only 2.15 kJ mol\(^{-1}\) when hydrolysis is catalysed by the enzyme sucrase. Explain.

How do you explain the presence of an aldehyde group in a glucose molecule?

Which moieties of nucleosides are involved in the formation of phosphodiester linkages present in dinucleotides? What does the word diester in the name of linkage indicate? Which acid is involved in the formation of this linkage?

What are glycosidic linkages? In which type of biomolecules are they present?

How do you explain the presence of an aldehyde group in a glucose molecule?

How do enzymes help a substrate to be attacked by the reagent effectively?

Describe the term D- and L- configuration used for amino acids with examples.

How will you distinguish 1° and 2° hydroxyl groups present in glucose? Explain with reactions.

Coagulation of egg white on boiling is an example of denaturation of protein. Explain it in terms of structural changes.

IV. Matching Type

Note: Match the items of Column I and Column II in the following questions. More than one option in Column II may match with the items given in Column I.

58. Match the vitamins given in Column I with the deficiency disease they cause given in Column II.

<table>
<thead>
<tr>
<th>Column I (Vitamins)</th>
<th>Column II (Diseases)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) Vitamin A</td>
<td>(a) Pernicious anaemia</td>
</tr>
<tr>
<td>(ii) Vitamin B(_1)</td>
<td>(b) Increased blood clotting time</td>
</tr>
<tr>
<td>(iii) Vitamin B(_{12})</td>
<td>(c) Xerophthalmia</td>
</tr>
<tr>
<td>(iv) Vitamin C</td>
<td>(d) Rickets</td>
</tr>
<tr>
<td>(v) Vitamin D</td>
<td>(e) Muscular weakness</td>
</tr>
<tr>
<td>(vi) Vitamin E</td>
<td>(f) Night blindness</td>
</tr>
<tr>
<td>(vii) Vitamin K</td>
<td>(g) Beri Beri</td>
</tr>
<tr>
<td></td>
<td>(h) Bleeding gums</td>
</tr>
<tr>
<td></td>
<td>(i) Osteomalacia</td>
</tr>
</tbody>
</table>
59. Match the following enzymes given in Column I with the reactions they catalyse given in Column II.

<table>
<thead>
<tr>
<th>Column I (Enzymes)</th>
<th>Column II (Reactions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) Invertase</td>
<td>(a) Decomposition of urea into NH_3 and CO_2</td>
</tr>
<tr>
<td>(ii) Maltase</td>
<td>(b) Conversion of glucose into ethyl alcohol</td>
</tr>
<tr>
<td>(iii) Pepsin</td>
<td>(c) Hydrolysis of maltose into glucose</td>
</tr>
<tr>
<td>(iv) Urease</td>
<td>(d) Hydrolysis of cane sugar</td>
</tr>
<tr>
<td>(v) Zymase</td>
<td>(e) Hydrolysis of proteins into peptides</td>
</tr>
</tbody>
</table>

V. Assertion and Reason Type

Note: In the following questions a statement of assertion followed by a statement of reason is given. Choose the correct answer out of the following choices.

(i) Assertion and reason both are correct statements and reason explains the assertion.
(ii) Both assertion and reason are wrong statements.
(iii) Assertion is correct statement and reason is wrong statement.
(iv) Assertion is wrong statement and reason is correct statement.
(v) Assertion and reason both are correct statements but reason does not explain assertion.

60. **Assertion** : D (+) – Glucose is dextrorotatory in nature.
 Reason : ‘D’ represents its dextrorotatory nature.

61. **Assertion** : Vitamin D can be stored in our body.
 Reason : Vitamin D is fat soluble vitamin.

62. **Assertion** : β-glycosidic linkage is present in maltose.
 ![Maltose Structure]
 Reason : Maltose is composed of two glucose units in which C–1 of one glucose unit is linked to C–4 of another glucose unit.
63. **Assertion**: All naturally occurring α-amino acids except glycine are optically active.

Reason: Most naturally occurring amino acids have L-configuration.

64. **Assertion**: Deoxyribose, \(\text{C}_5\text{H}_{10}\text{O}_4 \), is not a carbohydrate.

Reason: Carbohydrates are hydrates of carbon so compounds which follow \(\text{C}_x(\text{H}_2\text{O})_y \) formula are carbohydrates.

65. **Assertion**: Glycine must be taken through diet.

Reason: It is an essential amino acid.

66. **Assertion**: In presence of enzyme, substrate molecule can be attacked by the reagent effectively.

Reason: Active sites of enzymes hold the substrate molecule in a suitable position.

VI. Long Answer Type

67. Write the reactions of D-glucose which can’t be explained by its open-chain structure. How can cyclic structure of glucose explain these reactions?

68. On the basis of which evidences D-glucose was assigned the following structure?

\[
\begin{align*}
\text{CHO} \\
(\text{CHOH})_4 \\
\text{CH}_2\text{OH}
\end{align*}
\]

69. Carbohydrates are essential for life in both plants and animals. Name the carbohydrates that are used as storage molecules in plants and animals, also name the carbohydrate which is present in wood or in the fibre of cotton cloth.

70. Explain the terms primary and secondary structure of proteins. What is the difference between α-helix and β-pleated sheet structure of proteins?

71. Write the structures of fragments produced on complete hydrolysis of DNA. How are they linked in DNA molecule? Draw a diagram to show pairing of nucleotide bases in double helix of DNA.
I. Multiple Choice Questions (Type-I)

1. (ii) 2. (iv) 3. (iii)
4. (iii), Hint: Cyclic hemiacetal forms of monosaccharide which differ only in the configuration of the hydroxyl group at C1 are anomers.
5. (iii), Hint: In α-helix, hydrogen bonds are present between –NH group of one amino acid residue to the >C=O group of another aminoacid residue.
6. (ii) 7. (ii) 8. (i) 9. (ii) 10. (iii) 11. (i)
12. (iii) 13. (iv) 14. (iv) 15. (i) 16. (iii) 17. (i)
18. (iii) 19. (iii)

II. Multiple Choice Questions (Type-II)

20. (ii), (iv) 21. (i), (iii) 22. (ii), (iv) 23. (i), (iv)
24. (i), (ii) 25. (i), (iii) 26. (ii), (iv) 27. (i), (ii) 28. (i), (iv)

III. Short Answer Type

29. Lactose, two monosaccharide units are present. Such oligosaccharides are called disaccharides.
30. On prolonged heating with HI, glucose gives n-hexane.
 \[\text{Glucose} \xrightarrow{\text{HI}} \text{CH}_3-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{CH}_3 \]
 (n-Hexane)
31. Phosphoric acid is linked at 5′-position of sugar moiety of nucleoside to give a nucleotide.
 ![Nucleotide](image.png)
32. Glycosidic linkage.
33. Glucose is converted to gluconic acid by bromine water and to saccharic acid by conc. HNO₃.
34. Fructose is a ketohexose.
35. ‘L’ configuration
36. ‘D’ configuration
37. Sucrose, see page no. 409 of NCERT textbook for the explanation.
38. α-amino acids, \(R-\text{CH}^{-}\text{COOH} \)

39. In α-helix, a polypeptide chain is stabilised by the formation of hydrogen bonds between —NH— group of amino acids in one turn with the >C==O groups of amino acids belonging to adjacent turn.

40. Oxidoreductase

41. Lactic acid.

42. Glucose gives pentaacetate derivative on acetylation with acetic anhydride. This confirms the presence of five —OH groups.

43. Glucose pentaacetate (structure A) doesn’t have a free —OH group at C1 and so can’t be converted to the open chain form to give —CHO group and hence doesn’t form the oxime.

44. Vitamin C is water soluble therefore it is readily excreted in urine and can’t be stored in our body.

45. On hydrolysis sucrose (dextrorotatory), gives glucose (dextrorotatory, +52.5°) and fructose (laevorotatory, −92.4°). Since laevorotation of fructose is more than the dextrorotation of glucose, the mixture is laevorotatory.

46. In aqueous solution, the carboxyl group loses a proton and amino group accepts a proton to form a zwitter ion.

47. In glycyllalanine, carboxyl group of glycine combines with the amino group of alanine.
48. Due to physical or chemical change, hydrogen bonds in proteins are disturbed, globules unfold and helix gets uncoiled therefore protein loses its biological activity. This is called denaturation of proteins.

49. Enzymes, the biocatalysts, reduce the magnitude of activation energy by providing alternative path. In the hydrolysis of sucrose the enzyme sucrase reduces the activation energy from 6.22 kJ mol\(^{-1}\) to 2.15 kJ mol\(^{-1}\).

50. Glucose reacts with hydroxylamine to form a monoxime and adds one molecule of hydrogen cyanide to give cyanohydrin so it contains a carbonyl group which can be an aldehyde or a ketone. On mild oxidation with bromine water, glucose gives gluconic acid which is a six carbon carboxylic acid. This indicates that carbonyl group present in glucose is an aldehydic group.

51. See page no. 420 of NCERT textbook.

52. See page no. 409 of NCERT textbook.

53. In starch and glycogen, glycosidic \(\alpha\)-linkage is present and in cellulose, glycosidic \(\beta\)-linkage is present between glucose units.

54. Active site of enzymes hold the substrate molecule in a suitable position, so that it can be attacked by the reagent effectively.

55. See the NCERT textbook for Class XII.

56. For answer see page no. 406 of NCERT textbook for Class XII.

57. For answer see page no. 416-417 of NCERT textbook for Class XII.

IV. Matching Type

58. (i) → (c), (f) (ii) → (g) (iii) → (a) (iv) → (h) (v) → (d), (i) (vi) → (e), (vii) → (b)

59. (i) → (d) (ii) → (c) (iii) → (e) (iv) → (a) (v) → (b)

V. Assertion and Reason Type

60. (iii) 61. (i) 62. (iv) 63. (v) 64. (ii) 65. (ii) 66. (i)

VI. Long Answer Type

67. See NCERT textbook for Class XII.

68. See NCERT textbook for Class XII.

69. **Hint**: Carbohydrate used as storage molecule in plants is starch and in animals, it is glycogen. Cellulose is present in wood or in the fibre of cotton cloth.

70. See NCERT textbook for Class XII.

71. See NCERT textbook for Class XII.
I. Multiple Choice Questions (Type-I)

1. Which of the following polymers of glucose is stored by animals?
 (i) Cellulose
 (ii) Amylose
 (iii) Amylopectin
 (iv) Glycogen

2. Which of the following is not a semisynthetic polymer?
 (i) cis-polyisoprene
 (ii) Cellulose nitrate
 (iii) Cellulose acetate
 (iv) Vulcanised rubber

3. The commercial name of polyacrylonitrile is ______________.
 (i) Dacron
 (ii) Orlon (acrilan)
 (iii) PVC
 (iv) Bakelite

4. Which of the following polymer is biodegradable?
 (i) \(\left(-\text{CH}_2-\text{C} = \text{CH}-\text{CH}_3 \right)_n \)
 (ii) \(\left(-\text{CH}_2-\text{CH} = \text{CH}-\text{CH}_2-\text{CH}_3-\text{CH} \right)_n \)
5. In which of the following polymers ethylene glycol is one of the monomer units?

(i) \(\text{OCH}_2\text{CH}_2\text{OC} \)

(ii) \(\text{CH}_2\text{CH}_2 \)

(iii) \(\text{CH}_2\text{CH} = \text{CH} - \text{CH}_2 - \text{CH}_2 \)

(iv) \(\text{OCH}_2\text{CH}_2\text{OC} \)

6. Which of the following statements is not true about low density polythene?

(i) Tough

(ii) Hard

(iii) Poor conductor of electricity

(iv) Highly branched structure

7. \(\text{CH}_2\text{CH} = \text{CH}_2 \) is a polymer having monomer units _________.

(i) \(-\)

(ii) \(-\)

(iii) \(-\)

(iv) \(-\)
8. Which of the following polymer can be formed by using the following monomer unit?

\[
\begin{array}{c}
\text{H} \\
\text{H}_2\text{C} \\
\text{N} \\
\text{C} \text{O} \\
\text{H}_2\text{C} \\
\text{CH}_2
\end{array}
\]

(i) Nylon 6, 6
(ii) Nylon 2–nylon 6
(iii) Melamine polymer
(iv) Nylon-6

II. Multiple Choice Questions (Type-II)

Note: In the following questions two or more options may be correct.

9. Which of the following polymers, need atleast one diene monomer for their preparation?
 (i) Dacron
 (ii) Buna-S
 (iii) Neoprene
 (iv) Novolac

10. Which of the following are characteristics of thermosetting polymers?
 (i) Heavily branched cross linked polymers.
 (ii) Linear slightly branched long chain molecules.
 (iii) Become infusible on moulding so cannot be reused.
 (iv) Soften on heating and harden on cooling, can be reused.

11. Which of the following polymers are thermoplastic?
 (i) Teflon
 (ii) Natural rubber
 (iii) Neoprene
 (iv) Polystyrene

12. Which of the following polymers are used as fibre?
 (i) Polytetrafluoroethane
 (ii) Polychloroprene
 (iii) Nylon
 (iv) Terylene
13. Which of the following are addition polymers?
 (i) Nylon
 (ii) Melamine formaldehyde resin
 (iii) Orlon
 (iv) Polystyrene

14. Which of the following polymers are condensation polymers?
 (i) Bakelite
 (ii) Teflon
 (iii) Butyl rubber
 (iv) Melamine formaldehyde resin

15. Which of the following monomers form biodegradable polymers?
 (i) 3-hydroxybutanoic acid + 3-hydroxypentanoic acid
 (ii) Glycine + amino caproic acid
 (iii) Ethylene glycol + phthalic acid
 (iv) Caprolactum

16. Which of the following are example of synthetic rubber?
 (i) Polychloroprene
 (ii) Polyacrylonitrile
 (iii) Buna-N
 (iv) cis-polyisoprene

17. Which of the following polymers can have strong intermolecular forces?
 (i) Nylon
 (ii) Polystyrene
 (iii) Rubber
 (iv) Polyesters

18. Which of the following polymers have vinylic monomer units?
 (i) Acrilan
 (ii) Polystyrene
 (iii) Nylon
 (iv) Teflon

19. Vulcanisation makes rubber ____________.
 (i) more elastic
 (ii) soluble in inorganic solvent
 (iii) crystalline
 (iv) more stiff
III. Short Answer Type

20. A natural linear polymer of 2-methyl-1, 3-butadiene becomes hard on treatment with sulphur between 373 to 415 K and —S—S— bonds are formed between chains. Write the structure of the product of this treatment?

21. Identify the type of polymer.
 —A—A—A—A—A—

22. Identify the type of polymer.
 —A—B—B—A—A—B—A—

23. Out of chain growth polymerisation and step growth polymerisation, in which type will you place the following.

\[
\begin{align*}
\text{(A)}_m + \text{(A)}_n & \rightarrow \text{(A)}_m \text{(A)}_n \\
\text{or} & \text{(A—A)}_{m+n}
\end{align*}
\]

24. Identify the type of polymer given in the following figure.

25. Identify the polymer given below:

\[
\text{H}_2\text{N—} \begin{array}{c}
\text{N} \\
\text{NHCH}_2\text{OH}
\end{array} \text{N—NH}_2
\]

(Resin intermediate)

26. Why are rubbers called elastomers?

27. Can enzyme be called a polymer?

28. Can nucleic acids, proteins and starch be considered as step growth polymers?

29. How is the following resin intermediate prepared and which polymer is formed by this monomer unit?

30. To have practical applications why are cross links required in rubber?

31. Why does cis-polyisoprene possess elastic property?
32. What is the structural difference between HDP and LDP? How does the structure account for different behaviour and nature, hence the use of a polymer?

33. What is the role of benzoyl peroxide in addition polymerisation of alkenes? Explain its mode of action with the help of an example.

34. Which factor imparts crystalline nature to a polymer like nylon?

35. Name the polymers used in laminated sheets and give the name of monomeric units involved in its formation.

36. Which type of biomolecules have some structural similarity with synthetic polyamides? What is this similarity?

37. Why should the monomers used in addition polymerisation through free radical pathway be very pure?

IV. Matching Type

Note: Match the items of Column I with the items in Column II.

38. Match the polymer of column I with correct monomer of column II.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) High density polythene</td>
<td>(a) Isoprene</td>
</tr>
<tr>
<td>(ii) Neoprene</td>
<td>(b) Tetrafluoroethene</td>
</tr>
<tr>
<td>(iii) Natural rubber</td>
<td>(c) Chloroprene</td>
</tr>
<tr>
<td>(iv) Teflon</td>
<td>(d) Acrylonitrile</td>
</tr>
<tr>
<td>(v) Acrilan</td>
<td>(e) Ethene</td>
</tr>
</tbody>
</table>

39. Match the polymers given in Column I with their chemical names given in Column II.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) Nylon 6</td>
<td>(a) Polyvinyl chloride</td>
</tr>
<tr>
<td>(ii) PVC</td>
<td>(b) Polyacrylonitrile</td>
</tr>
<tr>
<td>(iii) Acrilan</td>
<td>(c) Polycaprolactum</td>
</tr>
<tr>
<td>(iv) Natural rubber</td>
<td>(d) Low density polythene</td>
</tr>
<tr>
<td>(v) LDP</td>
<td>(e) cis-polyisoprene</td>
</tr>
</tbody>
</table>

40. Match the polymers given in Column I with their commercial names given in Column II.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) Polyester of glycol and phthalic acid</td>
<td>(a) Novolac</td>
</tr>
<tr>
<td>(ii) Copolymer of 1, 3-butadiene and styrene</td>
<td>(b) Glyptal</td>
</tr>
<tr>
<td>(iii) Phenol and formaldehyde resin</td>
<td>(c) Buna-S</td>
</tr>
</tbody>
</table>
(iv) Polyester of glycol and terephthalic acid (d) Buna-N
(v) Copolymer of 1, 3-butadiene and acrylonitrile (e) Dacron

41. Match the polymers given in Column I with their main applications given in Column II.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) Bakelite</td>
<td>(a) Unbreakable crockery</td>
</tr>
<tr>
<td>(ii) Low density polythene</td>
<td>(b) Non-stick cookwares</td>
</tr>
<tr>
<td>(iii) Melamine-formaldehyde resin</td>
<td>(c) Packaging material for shock absorbance</td>
</tr>
<tr>
<td>(iv) Nylon 6</td>
<td>(d) Electrical switches</td>
</tr>
<tr>
<td>(v) Polytetrafluoroethane</td>
<td>(e) Squeeze bottles</td>
</tr>
<tr>
<td>(vi) Polystyrene</td>
<td>(f) Tyre, cords</td>
</tr>
</tbody>
</table>

42. Match the polymers given in Column I with the preferred mode of polymerisation followed by their monomers.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) Nylon-6,6</td>
<td>(a) Free radical polymerisation</td>
</tr>
<tr>
<td>(ii) PVC</td>
<td>(b) Ziegler-Natta polymerisation or coordination polymerisation</td>
</tr>
<tr>
<td>(iii) HDP</td>
<td>(c) Anionic polymerisation</td>
</tr>
<tr>
<td></td>
<td>(d) Condensation polymerisation</td>
</tr>
</tbody>
</table>

43. Match the polymers given in Column I with the type of linkage present in them given in Column II.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) Terylene</td>
<td>(a) Glycosidic linkage</td>
</tr>
<tr>
<td>(ii) Nylon</td>
<td>(b) Ester linkage</td>
</tr>
<tr>
<td>(iii) Cellulose</td>
<td>(c) Phosphodiester linkage</td>
</tr>
<tr>
<td>(iv) Protein</td>
<td>(d) Amide linkage</td>
</tr>
<tr>
<td>(v) RNA</td>
<td></td>
</tr>
</tbody>
</table>

44. Match materials given in Column I with the polymers given in Column II.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) Natural rubber latex</td>
<td>(a) Nylon</td>
</tr>
<tr>
<td>(ii) Wood laminates</td>
<td>(b) Neoprene</td>
</tr>
<tr>
<td>(iii) Ropes and fibres</td>
<td>(c) Dacron</td>
</tr>
<tr>
<td>(iv) Polyester fabric</td>
<td>(d) Melamine formaldehyde resins</td>
</tr>
<tr>
<td>(v) Synthetic rubber</td>
<td>(e) Urea-formaldehyde resins</td>
</tr>
<tr>
<td>(vi) Unbreakable crockery</td>
<td>(f) cis-polyisoprene</td>
</tr>
</tbody>
</table>
45. Match the polymers given in Column I with their repeating units given in Column II.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) Acrilan</td>
<td>(\left(\text{CH}_2\text{CH} \right)_n)</td>
</tr>
<tr>
<td>(ii) Polystyrene</td>
<td>(\left(\text{CH}_2=\text{C} \right. \text{CH}_2 \text{CH}_3 \right)_n)</td>
</tr>
<tr>
<td>(iii) Neoprene</td>
<td>(\left(\text{CH}_2\text{CH} \right. \text{CH}_2 \text{CH}_3 \text{CH}_2 \text{CH}_3 \right)_n)</td>
</tr>
<tr>
<td>(iv) Novolac</td>
<td>(\left(\text{CH}_2\text{CH} \right)_n)</td>
</tr>
<tr>
<td>(v) Buna—N</td>
<td>(\left(\text{CH}_2\text{CH} \right)_n)</td>
</tr>
</tbody>
</table>

V. Assertion and Reason Type

Note: In the following questions a statement of assertion followed by a statement of reason is given. Choose the correct answer out of the following choices.

(i) Assertion and reason both are correct statement but reason does not explain assertion.
(ii) Assertion and reason both are correct statements and reason explains the assertion.
(iii) Both assertion and reason are wrong statement.
(iv) Assertion is correct statement and reason is wrong statement.
(v) Assertion is wrong statement and reason is correct statement.

46. **Assertion**: Rayon is a semi synthetic polymer and is taken as a better choice than cotton fabric.
Reason: Mechanical and aesthetic properties of cellulose can be improved by acetylation.
47. **Assertion** : Most of the Synthetic polymers are not biodegradable.
Reason : Polymerisation process induces toxic character in organic molecules.

48. **Assertion** : Olefinic monomers undergo addition polymerisation.
Reason : Polymerisation of vinylchloride is initiated by peroxides/persulphates.

49. **Assertion** : Polyamides are best used as fibres because of high tensile strength.
Reason : Strong intermolecular forces (like hydrogen bonding within polyamides) lead to close packing of chains and increase the crystalline character, hence, provide high tensile strength to polymers.

50. **Assertion** : For making rubber synthetically, isoprene molecules are polymerised.
Reason : Neoprene (a polymer of chloroprene) is a synthetic rubber.

51. **Assertion** : Network polymers are thermostetting.
Reason : Network polymers have high molecular mass.

52. **Assertion** : Polytetrafluoroethene is used in making non-stick cookwares.
Reason : Fluorine has highest electronegativity.

VI. Long Answer Type

53. Synthetic polymers do not degrade in the environment for a long time. How can biodegradable synthetic polymers be made. Differentiate between biopolymers and biodegradable polymers and give examples of each type.

54. Differentiate between rubbers and plastics on the basis of intermolecular forces.

55. Phenol and formaldehyde undergo condensation to give a polymar (A) which on heating with formaldehyde gives a thermostetting polymer (B). Name the polymers. Write the reactions involved in the formation of (A). What is the structural difference between two polymers?

56. Low density polythene and high density polythene, both are polymers of ethene but there is marked difference in their properties. Explain.

57. Which of the following polymers soften on heating and harden on cooling? What are the polymers with this property collectively called? What are the structural similarities between such polymers? Bakelite, urea-formaldehyde resin, polythene, polyvinyls, polystyrene.
I. Multiple Choice Questions (Type-I)
1. (iv)
2. (i)
3. (ii)
4. (iv)
5. (i)
6. (iii)
7. (i)
8. (iv)

II. Multiple Choice Questions (Type-II)
9. (ii), (iii)
10. (i), (iii)
11. (i), (iv)
12. (iii), (iv)
13. (iii), (iv)
14. (i), (iv)
15. (i), (ii)
16. (i), (iii)
17. (i), (iv)
18. (i), (ii), (iv)
19. (i), (iv)

III. Short Answer Type
20. Vulcanised rubber. For structure see Class XII NCERT textbook.
21. Homopolymer
22. Copolymer
23. Chain growth polymerisation
24. Cross-linked polymer
25. Polyisoprene/Natural rubber
26. Rubbers are stretched on application of force and regain original state after the force is removed. Therefore these are called elastomers.
27. Enzymes are biocatalysts which are proteins and are thus polymers.
28. [Hint : Yes, step growth polymers are condensation polymers and they are formed by the loss of simple molecule like water leading to the formation of high molecular mass polymers.]
29. Melamine and formaldehyde are starting materials for this intermediate. Its polymerisation gives melamine polymer.
30. Cross links bind the planar polymer sheets thus increasing its elastomeric properties.
33. See Class-XII NCERT textbook, page no. 428.
34. Strong intermolecular forces like hydrogen-bonding, lead to close packing of chains that imparts crystalline character.
35. Urea formaldehyde resins. Monomer units are urea and formaldehyde.
36. Proteins. Polyamides and proteins both contain amide linkage.

37. Pure monomers are required because even the traces of impurities may act like inhibitors which leads to the formation of polymers with shorter chain length.

IV. Matching Type

38. (i) → (c) (ii) → (c) (iii) → (a) (iv) → (b) (v) → (d)
39. (i) → (c) (ii) → (a) (iii) → (b) (iv) → (e) (v) → (d)
40. (i) → (b) (ii) → (c) (iii) → (a) (iv) → (e) (v) → (d)
41. (i) → (d) (ii) → (e) (iii) → (a) (iv) → (f) (v) → (b)
 (vi) → (c)
42. (i) → (d) (ii) → (a) (iii) → (b)
43. (i) → (b) (ii) → (d) (iii) → (a) (iv) → (d) (v) → (c)
44. (i) → (f) (ii) → (e) (iii) → (a) (iv) → (c) (v) → (b)
 (vi) → (d)
45. (i) → (d) (ii) → (a) (iii) → (b) (iv) → (e) (v) → (c)

V. Assertion and Reason Type

46. (ii) 47. (iv) 48. (i) 49. (ii) 50. (v) 51. (i)
52. (i)

VI. Long Answer Type

53. See NCERT textbook for Class XII.
54. See NCERT textbook for Class XII.
55. ‘A’ is novolac, ‘B’ is bakelite.
56. **Hint** : Low density and high density polyethylenes are obtained under different conditions. These differ in their structural features. Low density polyethylenes are highly branched structures while high density polyethylene consists of closely packed linear molecules. Close packing increases the density.
57. **Hint** : Polythene, polyvinyls and polystyrenes soften on heating and harden on cooling. Such polymers are called thermoplastic polymers. These polymers are linear or slightly branched long chain molecules. These possess intermolecular forces whose strength lies between strength of intermolecular forces of elastomers and fibres.
I. Multiple Choice Questions (Type-I)

1. Which of the following statements is **not** correct.
 (i) Some antiseptics can be added to soaps.
 (ii) Dilute solutions of some disinfectants can be used as antiseptic.
 (iii) Disinfectants are antimicrobial drugs.
 (iv) Antiseptic medicines can be ingested.

2. Which is the correct statement about birth control pills?
 (i) Contain estrogen only.
 (ii) Contain progesterone only.
 (iii) Contain a mixture of estrogen and progesterone derivatives.
 (iv) Progesterone enhances ovulation.

3. Which statement about aspirin is **not** true
 (i) Aspirin belongs to narcotic analgesics.
 (ii) It is effective in relieving pain.
 (iii) It has antiblood clotting action.
 (iv) It is a neurologically active drug.

4. The most useful classification of drugs for medicinal chemists is ________.
 (i) on the basis of chemical structure.
 (ii) on the basis of drug action.
(iii) on the basis of molecular targets.
(iv) on the basis of pharmacological effect.

5. Which of the following statements is correct?
 (i) Some tranquilisers function by inhibiting the enzymes which catalyse the degradation of noradrenaline.
 (ii) Tranquilisers are narcotic drugs.
 (iii) Tranquilisers are chemical compounds that do not affect the message transfer from nerve to receptor.
 (iv) Tranquilisers are chemical compounds that can relieve pain and fever.

6. Salvarsan is arsenic containing drug which was first used for the treatment of __________.
 (i) syphilis
 (ii) typhoid
 (iii) meningitis
 (iv) dysentry

7. A narrow spectrum antibiotic is active against ____________.
 (i) gram positive or gram negative bacteria.
 (ii) gram negative bacteria only.
 (iii) single organism or one disease.
 (iv) both gram positive and gram negative bacteria.

8. The compound that causes general antidepressant action on the central nervous system belongs to the class of ____________.
 (i) analgesics
 (ii) tranquilizers
 (iii) narcotic analgesics
 (iv) antihistamines

9. Compound which is added to soap to impart antiseptic properties is __________.
 (i) sodium laurylsulphate
 (ii) sodium dodecylbenzenesulphonate
 (iii) rosin
 (iv) bithional

10. Equanil is __________.
 (i) artificial sweetener
 (ii) tranquilizer
 (iii) antihistamine
 (iv) antifertility drug
11. Which of the following enhances leathering property of soap?
 (i) Sodium carbonate
 (ii) Sodium rosinate
 (iii) Sodium stearate
 (iv) Trisodium phosphate

12. Glycerol is added to soap. It functions ______________.
 (i) as a filler.
 (ii) to increase leathering.
 (iii) to prevent rapid drying.
 (iv) to make soap granules.

13. Which of the following is an example of liquid dishwashing detergent?
 (i) \(\text{CH}_3(\text{CH}_2)_{10}-\text{CH}_2\text{OSO}_3\text{Na}^+ \)
 (ii) \(\begin{array}{c}
 \text{CH}_3
 \end{array}
 \begin{array}{c}
 \text{O}
 \end{array}
 \begin{array}{c}
 (\text{CH}_2-\text{CH}_2-\text{O})_5-\text{CH}_2\text{CH}_2\text{OH}
 \end{array}
 \)
 (iii) \(\text{CH}_3-\text{SO}_3\text{Na}^- \)
 (iv) \(\begin{array}{c}
 \text{CH}_3
 \end{array}
 \begin{array}{c}
 \text{N}
 \end{array}
 \begin{array}{c}
 \text{CH}_3
 \end{array}
 \begin{array}{c}
 \text{Br}^-
 \end{array}
 \)

14. Polyethyleneglycols are used in the preparation of which type of detergents?
 (i) Cationic detergents
 (ii) Anionic detergents
 (iii) Non-ionic detergents
 (iv) Soaps

15. Which of the following is not a target molecule for drug function in body?
 (i) Carbohydrates
 (ii) Lipids
 (iii) Vitamins
 (iv) Proteins
16. Which of the following statements is not true about enzyme inhibitors?
 (i) Inhibit the catalytic activity of the enzyme.
 (ii) Prevent the binding of substrate.
 (iii) Generally a strong covalent bond is formed between an inhibitor and an enzyme.
 (iv) Inhibitors can be competitive or non-competitive.

17. Which of the following chemicals can be added for sweetening of food items at cooking temperature and does not provide calories?
 (i) Sucrose
 (ii) Glucose
 (iii) Aspartame
 (iv) Sucrolose

18. Which of the following will not enhance nutritional value of food?
 (i) Minerals
 (ii) Artificial sweeteners
 (iii) Vitamins
 (iv) Aminoacids

II. Multiple Choice Questions (Type-II)

Note: In the following questions two or more options may be correct.

19. Which of the following statements are incorrect about receptor proteins?
 (i) Majority of receptor proteins are embedded in the cell membranes.
 (ii) The active site of receptor proteins opens on the inside region of the cell.
 (iii) Chemical messengers are received at the binding sites of receptor proteins.
 (iv) Shape of receptor doesn’t change during attachment of messenger.

20. Which of the following are not used as food preservatives?
 (i) Table salt
 (ii) Sodium hydrogencarbonate
 (iii) Cane sugar
 (iv) Benzoic acid

21. Compounds with antiseptic properties are ____________.
 (i) CHCl_3
(ii) CHI$_3$
(iii) Boric acid
(iv) 0.3 ppm aqueous solution of Cl$_2$

22. Which of the following statements are correct about barbiturates?
 (i) Hypnotics or sleep producing agents.
 (ii) These are tranquilizers.
 (iii) Non-narcotic analgesics.
 (iv) Pain reducing without disturbing the nervous system.

23. Which of the following are sulpha drugs?
 (i) Sulphapyridine
 (ii) Prontosil
 (iii) Salvarsan
 (iv) Nardil

24. Which of the following are antidepressants?
 (i) Iproniazid
 (ii) Phenelzine
 (iii) Equanil
 (iv) Salvarsan

25. Which of the following statements are incorrect about penicillin?
 (i) An antibacterial fungus.
 (ii) Ampicillin is its synthetic modification.
 (iii) It has bacteriostatic effect.
 (iv) It is a broad spectrum antibiotic.

26. Which of the following compounds are administered as antacids?
 (i) Sodium carbonate
 (ii) Sodium hydrogencarbonate
 (iii) Aluminium carbonate
 (iv) Magnesium hydroxide

27. Amongst the following antihistamines, which are antacids?
 (i) Ranitidine
(ii) Brompheniramine
(iii) Terfenadine
(iv) Cimetidine

28. Veronal and luminal are derivatives of barbituric acid which are __________.
 (i) Tranquilizers
 (ii) Non-narcotic analgesic
 (iii) Antiallergic drugs
 (iv) Neurologically active drugs

29. Which of the following are anionic detergents?
 (i) Sodium salts of sulphonated long chain alcohol.
 (ii) Ester of stearic acid and polyethylene glycol.
 (iii) Quarternary ammonium salt of amine with acetate ion.
 (iv) Sodium salts of sulphonated long chain hydrocarbons.

30. Which of the following statements are correct?
 (i) Cationic detergents have germicidal properties
 (ii) Bacteria can degrade the detergents containing highly branched chains.
 (iii) Some synthetic detergents can give foam even in ice cold water.
 (iv) Synthetic detergents are not soaps.

III. Short Answer Type

31. What is the average molecular mass of drugs?
32. Write the uses of medicines.
33. What are antiseptics?
34. Which type of drugs come under antimicrobial drugs?
35. Where are receptors located?
36. What is the harmful effect of hyperacidity?
37. Which site of an enzyme is called allosteric site?
38. What type of forces are involved in binding of substrate to the active site of enzyme?
39. What is the commonality between the antibiotic arsphenamine and azodye?
40. Which class of drugs is used in sleeping pills?

41. Aspirin is pain relieving antipyretic drug but can be used to prevent heart attack. Explain.

42. Both antacids and antiallergic drugs are antihistamines but they cannot replace each other. Explain why?

43. What is a soft soap?

44. If soap has high alkali content it irritates skin. How can the amount of excess alkali be determined? What can be the source of excess alkali?

45. Explain why some times foaming is seen in river water near the place where sewage water is poured after treatment?

46. Which category of the synthetic detergents is used in toothpaste?

47. Hair shampoos belong to which class of synthetic detergent?

48. Dishwashing soaps are synthetic detergents. What is their chemical nature?

49. Draw the diagram showing micelle formation by the following detergent.

\[\text{CH}_3(\text{CH}_2)_{10}\text{CH}_2\text{OSO}_3^–\text{Na}^+ \]

50. How does the branching of hydrocarbon chain of synthetic detergents affect their biodegradability?

51. Why is it safer to use soap from the environmental point of view?

52. What are analgesics?

53. What is the scientific explanation for the feeling of depression?

54. What is the basic difference between antiseptics and disinfectants?

55. Between sodiumhydrogencarbonate and magnesium hydroxide which is a better antacid and why?

56. Which analgesics are called opiates?

57. What is the medicinal use of narcotic drugs?

58. What are antagonistic drugs?

59. What is the mode of action of antimicrobial drugs?

60. What is the side product of soap industry? Give reactions showing soap formation.

61. What is the difference between bathing soap and washing soaps?

62. How are transparent soaps manufactured?

63. What is the advantage of using antihistamines over antacids in the treatment of acidity?
64. What are the functions performed by histamine in the body?

65. With the help of an example explain how do tranquilizers control the feeling of depression?

66. Why are certain drugs called enzyme inhibitors?

67. What are fillers and what role these fillers play in soap?

68. Sugar is the main source of energy as it produces energy on metabolic decomposition. But these days low calorie drinks are more popular, why?

69. Pickles have a long shelf life and do not get spoiled for months, why?

70. What is the difference between saccharin and saccharic acid?

71. Name an artificial sweetener which is derivative of sucrose.

72. Name two α-amino acids which form a dipeptide which is 100 times more sweet than cane sugar?

73. Aspartame is unstable at cooking temperature, where would you suggest aspartame to be used for sweetening?

74. Sodium salts of some acids are very useful as food preservatives. Suggest a few such acids.

75. Explain the role of allosteric site in enzyme inhibition?

76. How are receptor proteins located in the cell membrane?

77. What happens when the bond formed between an enzyme and an inhibitor is a strong covalent bond?

IV. Matching Type

Note: Match the items given in Column I with the items given in Column II.

78. Match the medicines given in Column I with their use given in Column II.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) Ranitidine</td>
<td>(a) Tranquilizer</td>
</tr>
<tr>
<td>(ii) Furacine</td>
<td>(b) Antibiotic</td>
</tr>
<tr>
<td>(iii) Phenelzine</td>
<td>(c) Antihistamine</td>
</tr>
<tr>
<td>(iv) Chloramphenicol</td>
<td>(d) Antiseptic</td>
</tr>
<tr>
<td></td>
<td>(e) Antifertility drug</td>
</tr>
</tbody>
</table>
79. Match the soaps given in Column I with items given in Column II.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) Soap chips</td>
<td>(a) dried miniature soap bubbles</td>
</tr>
<tr>
<td>(ii) Soap granules</td>
<td>(b) small broken pieces of soap formed from melted soaps</td>
</tr>
<tr>
<td>(iii) Soap powder</td>
<td>(c) soap powder + abrasives + builders (Na₂CO₃, Na₃PO₄)</td>
</tr>
<tr>
<td>(iv) Scouring soap</td>
<td>(d) soap powder + builders like Na₂CO₃ and Na₃PO₄</td>
</tr>
</tbody>
</table>

80. Match structures given in Column I with the type of detergents given in Column II.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) CH₃(CH₂)₁₆COO(CH₂CH₂O)ₖCH₂CH₂OH</td>
<td>(a) Cationic detergent</td>
</tr>
<tr>
<td>(ii) C₁₇H₃₅COO⁻Na⁺</td>
<td>(b) Anionic detergent</td>
</tr>
<tr>
<td>(iii) CH₃—(CH₂)₁₀CH₂SO₃⁻Na⁺</td>
<td>(c) Nonionic detergent</td>
</tr>
<tr>
<td>(iv) CH₃(CH₂)₁₅—N—CH₃Br⁻</td>
<td>(d) Soap</td>
</tr>
</tbody>
</table>

81. Match the detergents given in Column I with their uses given in Column II.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) CH₃(CH₂)₁₅—N—CH₃Br⁻</td>
<td>(a) Dishwashing powder</td>
</tr>
<tr>
<td>(ii) CH₃—(CH₂)₁₆—SO₃Na⁺</td>
<td>(b) Laundry soap</td>
</tr>
<tr>
<td>(iii) C₁₇H₃₅COO⁻Na⁺ + Na₂CO₃ + Rosin</td>
<td>(c) Hair conditioners</td>
</tr>
<tr>
<td>(iv) CH₃(CH₂)₁₀COO(CH₂CH₂O)ₖCH₂CH₂OH</td>
<td>(d) Toothpaste</td>
</tr>
</tbody>
</table>
82. Match the class of compounds given in Column I with their functions given in Column II.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) Antagonists</td>
<td>(a) Communicate message between two neurons and that between neurons to muscles</td>
</tr>
<tr>
<td>(ii) Agonists</td>
<td>(b) Bind to the receptor site and inhibit its natural function</td>
</tr>
<tr>
<td>(iii) Chemical messenger</td>
<td>(c) Crucial to body’s communication process</td>
</tr>
<tr>
<td>(iv) Inhibitors</td>
<td>(d) Mimic the natural messenger</td>
</tr>
<tr>
<td>(v) Receptors</td>
<td>(e) Inhibit activities of enzymes.</td>
</tr>
</tbody>
</table>

83. Match the classes of drugs given in Column I with their action given in Column II.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) Analgesics</td>
<td>(a) Inhibit the growth of microorganisms can be given orally.</td>
</tr>
<tr>
<td>(ii) Antiseptics</td>
<td>(b) Treatment of stress</td>
</tr>
<tr>
<td>(iii) Antihistamines</td>
<td>(c) Applied to inanimate objects</td>
</tr>
<tr>
<td>(iv) Antacids</td>
<td>(d) Prevents the interaction of histamine with its receptor</td>
</tr>
<tr>
<td>(v) Tranquilisers</td>
<td>(e) Pain killing effect</td>
</tr>
<tr>
<td>(vi) Antibiotics</td>
<td>(f) Applied to diseased skin surfaces</td>
</tr>
<tr>
<td>(vii) Disinfectants</td>
<td>(g) Treatment of acidity</td>
</tr>
</tbody>
</table>

V. Assertion and Reason Type

Note: In the following questions a statement of assertion followed by a statement of reason is given. Choose the correct answer out of the following choices.

(i) Assertion and reason both are correct statement but reason does not explain assertion.
(ii) Assertion and reason both are correct and reason explains the assertion.
(iii) Both assertion and reason are wrong statement.
(iv) Assertion is correct statement reason is wrong statement.
(v) Assertion is wrong statement reason is correct statement.
84. Assertion : Penicillin (G) is an antihistamine
 Reason : Penicillin (G) is effective against gram positive as well as gram negative bacteria.

85. Assertion : Sulpha drug contain sulphonamide group.
 Reason : Salvarsan is a sulpha drug.

86. Assertion : Receptors are crucial to body's communication process.
 Reason : Receptors are proteins.

87. Assertion : Enzymes have active sites that hold substrate molecule for a chemical reaction.
 Reason : Drugs compete with natural substrate by attaching covalently to the active site of enzyme.

88. Assertion : Chemical messengers are chemicals that enable communication of message between two neurons or between neurons and muscles.
 Reason : Chemicals enter the cell through receptor.

89. Assertion : Transparent soaps are made by dissolving soaps in ethanol.
 Reason : Ethanol makes things invisible.

90. Assertion : Sodium chloride is added to precipitate soap after saponification.
 Reason : Hydrolysis of esters of long chain fatty acids by alkali produces soap in colloidal form.

91. Assertion : Competitive inhibitors compete with natural substrate for their attachment on the active sites of enzymes.
 Reason : In competitive inhibition, inhibitor binds to the allosteric site of the enzyme.

92. Assertion : Non-competitive inhibitor inhibits the catalytic activity of enzyme by binding with its active site.
 Reason : Non-competitive inhibitor changes the shape of the active site in such a way that substrate can’t recognise it.

93. Assertion : Chemical messenger gives message to the cell without entering the cell.
 Reason : Chemical messenger is received at the binding site of receptor proteins.

94. Assertion : Receptor proteins show selectivity for one chemical messenger over the other.
 Reason : Chemical messenger binds to the receptor site and inhibits its natural function.
95. **Assertion**: All chemicals added to food items are called food preservatives.
 Reason: All these chemicals increase the nutritive value of the food.

96. **Assertion**: Preservatives are added to food items.
 Reason: Preservatives inhibit the growth of microorganisms.

97. **Assertion**: Artificial sweeteners are added to the food to control the intake of calories.
 Reason: Most of the artificial sweeteners are inert and do not metabolise in the body.

VI. Long Answer Type

98. In what respect do prontosil and salvarsan resemble. Is there any resemblance between azo dye and prontosil? Explain.

99. How do enzymes catalyse a chemical reaction in the living system? Explain drug target interaction taking the example of enzyme as target.

100. Synthetic detergents have advantage over usual soaps as far as cleansing power is concerned. But use of synthetic detergents over a long time creates environmental pollution. How can the pollution caused by synthetic detergents be minimised? Classify the detergents according to their chemical nature.

101. What are enzyme inhibitors? Classify them on the basis of their mode of attachments on the active site of enzymes. With the help of diagrams explain how do inhibitors inhibit the enzymatic activity.
I. Multiple Choice Questions (Type-I)

1. (iv) 2. (iii) 3. (i) 4. (iii) 5. (i) 6. (i)

II. Multiple Choice Questions (Type-II)

19. (ii), (iv) 20. (i), (iii) 21. (i), (ii), (iii) 22. (i), (ii)
23. (i), (ii) 24. (i), (ii), (iii) 25. (iii), (iv) 26. (ii), (iv)
27. (i), (iv) 28. (i), (iv) 29. (i), (iv) 30. (i), (iii), (iv)

III. Short Answer Type

31. ~100–500u.
32. Medicines are used in diagnosis, prevention and treatment of diseases.
33. Antiseptics are chemicals which either kill or prevent the growth of microorganisms and are applied to living tissues.
34. Antiseptics, antibiotics and disinfectants.
35. Receptors are embedded in cell membrane.
36. Ulcer development in stomach.
37. Sites different from active site of enzyme where a molecule can bind and affect the active site is called allosteric site. Some drugs may also bind at this site.
38. Ionic bonding, hydrogen bonding, van der Waals interaction, dipole-dipole interaction.
39. Arsphenamine possesses —As===As— linkage that resembles —N===N— linkages in azodyes.
40. Tranquilizers
41. Aspirin prevents platelet coagulation and thus has antiblood clotting action therefore can prevent blood clogging in heart.
42. See page no. 444 of NCERT textbook for Class XII.
43. These are potassium salts of fatty acids.
44. Acid-base titration can be used to determine the excess amount of alkali in soap. The excess alkali left after hydrolysis of oil can be the source of alkalinity in soap.
45. Detergents persist in water even after sewage treatment and cause foaming in river water.
46. Anionic detergent.
47. Cationic detergent.
48. Non-ionic detergents

49. ![Diagram of detergent molecule]

50. Less branching leads to easy biodegradability.

51. Soaps are biodegradable while detergents are quite stable because of branching in hydrocarbon chain hence cause water pollution.

52. Analgesics are neurologically active pain killing drugs that reduce or abolish pain without causing impairment of consciousness, mental confusion, coordination or paralysis or some other disturbances of nervous system.

53. A person suffers from depression when he has low levels of noradrenaline. Noradrenaline is a neurotransmitter that plays a role in mood changes. Low levels of noradrenaline lower the signal-sending activity and make the person suffer from depression.

54. Antiseptics are applied to living tissues whereas disinfectants are applied to non living objects.

55. Magnesium hydroxide is a better antacid because being insoluble it does not allow the pH to increase above neutral. Hydrogencarbonate being soluble, its excess can make the stomach alkaline and trigger the production of even more acid.

56. Narcotic analgesics which are obtained from opium poppy are called opiates. Examples are morphine and its derivatives like heroin and codeine.

57. Since narcotic drugs relieve pain and produce sleep, these are chiefly used for the relief of postoperative pain, cardiac pain and pain of terminal cancer and in child birth.

58. Drugs that bind to the receptor site and inhibit its natural function are called antagonistic drugs.

59. Antimicrobial drugs can kill the microorganism such as bacteria, virus, fungi or other parasites. They can, alternatively, inhibit the pathogenic action of microbes.
60. [**Hint:** Glycerol.]

61. Bathing soaps are potassium salts of long chain fatty acids while washing soaps are sodium salts of long chain fatty acids.

62. Dissolving soap in ethanol followed by evaporating the excess solvent.

63. Antacids control only the symptoms and not the cause. They work by neutralising the acid produced in the stomach. They do not control the cause of production of more acid. Antihistamines are the drugs that suppress the action of histamine which is the chemical responsible for stimulation of secretion of pepsin and HCl in the stomach. Antihistamines influence and prevent the binding of histamine with the receptors present in the stomach wall resulting in lower acid production and therefore, better treatment.

64. Histamine is a potent vasodilator. It contracts muscles in the gut and bronchi. It relaxes some other muscles e.g. in the walls of blood vessels. Histamine is also responsible for congestion in the nose associated with common cold and allergies. Also, histamine stimulates the release of pepsin and hydrochloric acid in the stomach.

65. See Class-XII NCERT, textbook page no. 444.

66. Enzymes have active sites that bind the substrate for effective and quick chemical reaction. The functional groups present at the active site of enzyme interact with functional groups of substrate via ionic bonding, hydrogen bonding, van der Waal interaction etc. Some drugs interfere with this interaction by blocking the binding site of enzyme and prevent the binding of actual substrate with enzyme. This inhibits the catalytic activity of the enzyme, therefore, these are called inhibitors.

67. Some substances are added to soap to affect the properties in order to make it useful for a particular application. Examples are sodium rosinate, sodium carbonate, etc. Sodium rosinate is added in laundry soaps, to increase lather and glycerol is added in shaving soaps, to prevent it from drying.

68. [**Hint:** In such drinks artificial sweetening agents are present which do not metabolise hence do not produce any energy.]

69. [**Hint:** Plenty of salt and cover of oil act as preservative. These do not allow bacteria to thrive on them.]

70.

Exemplar Problems, Chemistry 242
71. Sucrose
72. Aspartic acid and phenylalanine.
73. In cold foods and soft drinks.
74. Benzoic acid, sorbic acid, propanoic acid.
75. **Hint**: For answer see page no. 441 of NCERT textbook for Class XII.
76. **Hint**: For answer see page no. 442 of NCERT textbook for Class XII.
77. **Hint**: For answer see page no. 442 of NCERT textbook for Class XII.

IV. Matching Type

78. (i) → (c) (ii) → (d) (iii) → (a) (iv) → (b)
79. (i) → (b) (ii) → (a) (iii) → (d) (iv) → (c)
80. (i) → (c) (ii) → (d) (iii) → (b) (iv) → (a)
81. (i) → (c) (ii) → (d) (iii) → (b) (iv) → (a)
82. (i) → (b) (ii) → (d) (iii) → (a) (iv) → (e) (v) → (c)
83. (i) → (e) (ii) → (f) (iii) → (d) (iv) → (g) (v) → (b)
 (vi) → (a) (vii) → (c)

V. Assertion and Reason Type

84. (iii) 85. (iv) 86. (i) 87. (iv) 88. (iv) 89. (iv)
90. (ii) 91. (iv) 92. (v) 93. (ii) 94. (iv) 95. (iii)
96. (ii) 97. (ii)

VI. Long Answer Type

98. **Hint**: For answer see NCERT textbook for Class XII.
99. **Hint**: For answer see NCERT textbook for Class XII.
100. **Hint**: For answer see NCERT textbook for Class XII.
101. **Hint**: For answer see NCERT textbook for Class XII.
I. Design of the Sample Question Paper

BLUE PRINT OF SAMPLE QUESTION PAPER (CHEMISTRY)

for CLASS XII

TIME : 3 HOURS

MAX. MARKS : 70

<table>
<thead>
<tr>
<th>Unit/Questions Type</th>
<th>Weightage to Content Unit (Marks)</th>
<th>Unitwise Weightage to Different Forms of Questions</th>
<th>Distribution of Different Types of Questions over the Units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MCQ</td>
<td>Short Answer</td>
</tr>
<tr>
<td>1. Solid State</td>
<td>3</td>
<td>1×1=1</td>
<td></td>
</tr>
<tr>
<td>2. Solutions</td>
<td>5</td>
<td>1×3=3</td>
<td></td>
</tr>
<tr>
<td>3. Electrochemistry</td>
<td>5</td>
<td>1×2=2</td>
<td></td>
</tr>
<tr>
<td>4. Chemical Kinetics</td>
<td>5</td>
<td>1×3=3</td>
<td></td>
</tr>
<tr>
<td>5. Surface Chemistry</td>
<td>3</td>
<td>1×2=2</td>
<td></td>
</tr>
<tr>
<td>6. General Principles and Processes of Isolation of Elements</td>
<td>5</td>
<td>1×1=1</td>
<td>1×1=1</td>
</tr>
<tr>
<td>7. The p-Block Elements</td>
<td>6</td>
<td>1×1=1</td>
<td>1×2=2</td>
</tr>
<tr>
<td>8. The d- and f- Block Elements</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Coordination Compounds</td>
<td>5</td>
<td>1×2=2</td>
<td>1×3=3</td>
</tr>
<tr>
<td>10. Haloalkanes and Haloarenes</td>
<td>5</td>
<td>1×2=2</td>
<td>1×3=3</td>
</tr>
<tr>
<td>11. Alcohols, Phenols and Ethers</td>
<td>5</td>
<td>1×3=3</td>
<td>1×2=2</td>
</tr>
<tr>
<td>12. Aldehydes, Ketones and Carboxylic Acids</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Amines</td>
<td>4</td>
<td>1×1=1</td>
<td>1×3=3</td>
</tr>
<tr>
<td>14. Biomolecules</td>
<td>3</td>
<td></td>
<td>1×3=3</td>
</tr>
<tr>
<td>15. Polymers</td>
<td>3</td>
<td>1×1=1</td>
<td>1×2=2</td>
</tr>
<tr>
<td>16. Chemistry in Everyday Life</td>
<td>3</td>
<td>1×1=1</td>
<td>1×2=2</td>
</tr>
</tbody>
</table>

TOTAL | 70 | 4 | 4 | 4 | 12 | 27 | 4 | 15 | 4 | 2 | 4 | 6 | 9 | 2 | 3 |

23/04/18
II. Expected Length of Answer and Time Required for Each Form of Question shall be as Follows:

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Forms of Questions</th>
<th>Expected Length</th>
<th>Expected Time for Each Question</th>
<th>Total Number of Questions</th>
<th>Total Time Expected</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>MCQ (I)</td>
<td>-</td>
<td>2 minutes</td>
<td>4</td>
<td>08 minutes</td>
</tr>
<tr>
<td>2.</td>
<td>MCQ (II)</td>
<td>-</td>
<td>3 minutes</td>
<td>2</td>
<td>06 minutes</td>
</tr>
<tr>
<td>3.</td>
<td>SA (I)</td>
<td>one line</td>
<td>3 minutes</td>
<td>4</td>
<td>12 minutes</td>
</tr>
<tr>
<td>4.</td>
<td>SA (II)</td>
<td>20-30 words</td>
<td>4 minutes</td>
<td>6</td>
<td>24 minutes</td>
</tr>
<tr>
<td>4.</td>
<td>SA (III)</td>
<td>30-50 words</td>
<td>7 minutes</td>
<td>9</td>
<td>63 minutes</td>
</tr>
<tr>
<td>6.</td>
<td>Assertion-Reason</td>
<td>-</td>
<td>3 minutes</td>
<td>2</td>
<td>06 minutes</td>
</tr>
<tr>
<td>7.</td>
<td>Long Answer Type</td>
<td>70-100 words</td>
<td>15 minutes</td>
<td>3</td>
<td>45 minutes</td>
</tr>
<tr>
<td>8.</td>
<td>Revision</td>
<td>-</td>
<td></td>
<td></td>
<td>16 minutes</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>-</td>
<td>30</td>
<td>180 minutes</td>
<td></td>
</tr>
</tbody>
</table>

III. Weightage to Difficulty Level of Questions

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Estimated Difficulty Level of Questions</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Easy</td>
<td>18</td>
</tr>
<tr>
<td>2.</td>
<td>Average</td>
<td>64</td>
</tr>
<tr>
<td>3.</td>
<td>Difficult</td>
<td>18</td>
</tr>
</tbody>
</table>
1. Which of the following substance will have lowest melting point? (i)
 (i) H₂O (ice)
 (ii) Quartz
 (iii) Diamond
 (iv) CO₂ (dry ice)

2. Which of the following reactions is an example of autoreduction? (i)
 (i) FeS + \(\frac{3}{2} \) O₂ \(\rightarrow \) FeO + SO₂
 (ii) FeO + SiO₂ \(\rightarrow \) FeSiO₃
 (iii) Cu₂O + \(\frac{1}{2} \) Cu₂S \(\rightarrow \) 3Cu + \(\frac{1}{2} \) SO₂
 (iv) Cu₂S + \(\frac{3}{2} \) O₂ \(\rightarrow \) Cu₂O + SO₂

3. In the titration of Mohr salt solution with KMnO₄ solution, dilute H₂SO₄ is used to provide acidic medium. The titration gives unsatisfactory result when we use HCl in place of H₂SO₄. This is because. (i)
 (i) MnO₄⁻ oxidises HCl to Cl₂.
 (ii) HCl oxidises MnO₄⁻ to Mn²⁺
 (iii) HCl forms chlorocomplex with Mn²⁺
 (iv) Fe²⁺ is reduced to Fe³⁺ in the presence of HCl

4. The correct IUPAC name for CH₂═CHCH₂NHCH₃ is ____________. (i)
 (i) Allylmethylamine
(ii) N-methylprop-2-en-1-amine
(iii) 4-amino-pent-1-ene
(iv) 2-amino-4-pentene

Note: Choose two correct options for questions 5 and 6.

5. Conductivity of an electrolytic solution depends on ___________. (2)
 (i) nature of electrolyte.
 (ii) concentration of electrolyte.
 (iii) area of cross section of the electrode.
 (iv) distance between the electrodes.

6. Which of the following are correct statements? (2)
 (i) Mixing two oppositely charged sols in equal amount neutralises charges and stabilises colloid.
 (ii) Presence of equal and similar charges on colloidal particles provides stability to the colloidal solution.
 (iii) Any amount of dispersed liquid can be added to emulsion without destabilising it.
 (iv) Brownian movement stabilises sols.

7. Why does prolonged dialysis destabilise the colloids? (1)

8. Although carbon and hydrogen are better reducing agents but they are not used to reduce metallic oxides at high temperatures. Why? (1)

9. Which forces impart crystalline nature to a polymer like nylon? (1)

10. Name an artificial sweetener which is derivative of sucrose. (1)

11. Explain why does conductivity of germanium crystals increases on doping with gallium. (2)

12. Explain why NCl₃ gets easily hydrolysed but NF₃ does not. (2)

13. Explain why [Fe(H₂O)₆]³⁺ has high magnetic moment value of 5.92 BM whereas magnetic moment of [Fe(CN)₆]³⁻ has value of only 1.74 BM. (2)

14. Why can aryhalide not be prepared by reaction of phenol with HCl in the presence of ZnCl₂? (2)

15. Write the name of starting materials used for the synthesis of following polymer and identify its monomer unit. (2)
16. How do antidepressant drugs counteract feeling of depression? (2)

17. Components of a binary mixture of two liquids A and B were being separated by distillation. After some time separation of components stopped and composition of vapour phase became same as that of liquid phase. Both the components started coming in the distillate. Explain why this happened. (3)

18. Identify the cathode and anode in the cell written below.

\[\text{Cu} \mid \text{Cu}^{2+} \parallel \text{Cl}^- \mid \text{Cl}_2, \text{Pt} \]

Write the reduction half reaction and oxidation half reaction of the cell. (3)

19. With the help of an example explain how one can separate two sulphide ores by Froth Floatation method. (3)

20. White phosphorus reacts with chlorine and the product gets hydrolysed in the presence of water to produce HCl. Calculate the mass of HCl obtained by the hydrolysis of the product formed by the reactions of 62 g of white phosphorus with chlorine in the presence of water. (3)

21. A coordination compound CrCl$_3$⋅4H$_2$O precipitates AgCl when treated with AgNO$_3$. The molar conductance of the solution of coordination compound corresponds to a total of two ions. Write structural formula of the compound and name it. (3)

22. Which of the following compounds would undergo S_n1 reaction faster and why? (3)

23. Ethers can be prepared by Williamson synthesis in which an alkyl halide is reacted with sodium alkoxide. Explain why di-tert-butyl ether can’t be prepared by this method. (3)

24. Suggest a route by which the following conversion can be accomplished. (3)

25. Three structures are given below in which two glucose units are linked. Which of these linkages between glucose units are between C1 and C4 and which linkages are between C1 and C6. Is the compound (I) reducing in nature? Explain. (3)
Note: In question 26 and 27. A statement of assertion followed by a statement of reason is given. Choose the correct option out of the options given below each equation.

26. **Assertion**: Molarity of a solution in liquid state changes with temperature.

 Reason: The volume of a solution changes with change in temperature. (2)

 (i) Assertion and reason both are correct statements and reason is correct explanation for assertion.
 (ii) Assertion and reason both are correct statements but reason is not correct explanation for assertion.
 (iii) Assertion is correct statement but reason is wrong statement.
 (iv) Assertion and reason both are incorrect statements.
 (v) Assertion is wrong statement but reason is correct statement.

27. **Assertion**: p-nitrophenol is more acidic than phenol.

 Reason: Nitro group helps in the stabilisation of the phenoxide ion by dispersal of negative charge due to resonance. (2)

 (i) Assertion and reason both are correct statements and reason is correct explanation for assertion.
 (ii) Assertion and reason both are correct statements but reason is not correct explanation for assertion.
 (iii) Assertion is correct statement but reason is wrong statement.
(iv) Assertion and reason both are incorrect statements.
(v) Assertion is wrong statement but reason is correct statement.

28. How are most probable kinetic energy and the energy of activation affected with increase in temperature.

or

Explain the difference between instantaneous rate of a reaction and average rate of a reaction.

29. Identify compounds A to E and also explain the reactions involved.

\[
\begin{array}{c|c}
CuCO_3 & Heat \\
CuO & D \\
 & heat with CuS \\
A & Ca(OH)_2 \\
 & HNO_3(\text{conc.}) \\
B & E \\
 & NH_3(aq.) \\
C & CO_2 \\
 & Deep blue solution \\
 & Ca(HCO_3)_2 \\
 & Clear solution
\end{array}
\]

or

A violet compound of manganese (A) decomposes on heating to liberate oxygen and compounds (B) and (C) of manganese are formed. Compound (C) reacts with KOH in the presence of KNO_3 to give compound (B). On heating compound (C) with a mixture of conc. H_2SO_4 and NaCl, chlorine gas is liberated and a compound (D) of manganese along with other products is formed. Identify compounds (A) to (D) and also explain the reaction involved.

30. An alkene 'A' (Molecular formula C_5H_{10}) on ozonolysis gives a mixture of two compounds 'B' and 'C'. Compound 'B' gives positive Fehling's test and also forms iodoform on treatment with iodine and NaOH solution. Compound 'C', does not give Fehling's test but forms iodoform. Identify the compounds 'A', 'B' and 'C' giving suitable explanation and write the reactions of ozonolysis and iodoform formation from either 'B' or 'C'.

or

Explain the reactivity of α-hydrogen atoms in ethanal. Write the reaction when (a) a mixture of ethanal and benzaldehyde is treated with NaOH (aq) and (b) when only benzaldehyde is treated with conc. KOH solution. Write the names of reaction in both the cases.
Guidelines for Evaluation (Marking Scheme)

1. (iv) (1)
2. (iii) (1)
3. (i) (1)
4. (ii) (1)
5. (i), (ii) (2)
6. (ii), (iv) (2)
7. Traces of electrolytes stabilise the colloids. On prolonged dialysis electrolyte is completely removed thus making the colloide unstable. (1)
8. At high temperature carbon and hydrogen react with metals to form carbides and hydrides respectively. (1)
9. Strong intermolecular forces like hydrogen-bonding, lead to close packing of chains that imparts crystalline character to polymers like nylon. (1)
10. Sucrolose (1)
11. On doping germanium with galium some of the positions of lattice of germanium are occupied by galium. Galium atom has only three valence electrons. Therefore, fourth valency of nearby germanium atom is not satisfied. These places remain vacant. This place is deficient of electrons and is therefore called electron hole or electron vacancy. Electron from neighbouring atom can come and fills the gap, thereby creating a hole in its original position. Under the influence of electric field electrons move towards positively charged plates using these holes and conduct electricity. The holes appear to move towards negatively charged plates. (2)
12. NCl\(_3\) is unstable in comparison to NF\(_3\) because N—Cl bond is weak in comparison to N—O bond while N—F bond is strong in comparison to N—O bond. (2)
13. Iron in [Fe(CN)\(_6\)]\(^{3–}\) involves \(d^5sp^3\) hybridisation with one unpaired electron and iron in [Fe(H\(_2\)O)\(_6\)]\(^{3+}\) involves \(sp^3d^6\) hybridisation with five unpaired electrons. This difference is due to the presence of strong ligand CN\(^–\) in [Fe(CN)\(_6\)]\(^{3–}\) and weak ligand H\(_2\)O in [Fe(H\(_2\)O)\(_6\)]\(^{3+}\). (2)

Distribution of marks
- Writing hybridisation (1 mark)
- Explanation (1 mark)

14. C—O bond in phenols is more stable due to resonance effect and it has double bond character hence breaking of this bond is difficult.

Distribution of marks
- Writing structure of phenol and aryl halide (½ mark)
- Writing resonance structure (½ mark)
- Explanation (1 mark)
15. **Distribution of marks**

- Monomer Unit (1 mark)
- Starting materials phenol and formaldehyde (½ × 2 = 1)

16. Antidepressent drugs inhibit the enzyme which catalyses the degradation of noradrenaline. Thus noradrenaline which acts as a neurotransmitter is slowly metabolised and continues to activate its receptor for a longer period of time. This activation of receptor for a long time counteracts the effect of depression.

17. Since both the components are appearing in the distillate and composition of liquid and vapour is same, this shows that liquids have formed azeotropic mixture. Hence, this cannot be separated at this stage by distillation.

Distribution of marks

- Recognising that azeotropic mixture has formed (1 mark)
- Explanation (2 mark)

18. Anode : Cu \rightarrow Cu$^{2+}$ + 2e$^-$

Cathode : Cl$_2$ + 2e$^-$$\rightarrow$ 2Cl$^-$

Copper is anode as it is getting oxidised

Cl$_2$ is the cathode as it is getting reduced.

Distribution of marks

- Anode reaction (1 mark)
- Cathode reaction (1 mark)
- Recognising electrodes on which oxidation and reduction occur (½ + ½ = 1 mark)

19. Two sulphide ores can be separated by adjusting proportion of oil to water or by using depressants. For example, in case of an ore containing ZnS and PbS, the depressant NaCN is used. It forms complex with ZnS and prevents its coming with froth, but PbS remains with froth and can be separated.

20. $\text{P}_4 + 6\text{Cl}_2 \rightarrow 4\text{PCl}_3$

$[\text{PCl}_3 + 3\text{H}_2\text{O} \rightarrow \text{H}_3\text{PO}_3 + 3\text{HCl}] \times 4$

$\text{P}_4 + 6\text{Cl}_2 + 12\text{H}_2\text{O} \rightarrow 4\text{H}_3\text{PO}_3 + 12\text{HCl}$

1 mol of white phosphorus produces 12 mol HCl

62g of white phosphorus has been taken which is equivalent to $\frac{62}{124} = \frac{1}{2}$ mol.

Therefore 6 mol HCl will be formed.

$6 \text{ mol HCl} = 6 \times 36.5 = 219.0 \text{ g HCl}$
21. **Distribution of marks**
- Identification: \([\text{Co(H}_2\text{O)}_4\text{Cl}_2]\text{Cl}\) (1 mark)
- Name: Tetraaquadichlorocobalt(III)chloride (1 mark)
- Explanation (1 mark)

22. (B) Undergoes S\(_{n}\)1 reaction faster than (A) because in case of (B) the carbocation formed after the loss of Cl\(^-\) ion is stabilised by resonance, whereas, no such stabilisation is possible in the carbocation obtained from (A).

Distribution of marks
- Resonance structures (1½ mark)
- Reason (1½ mark)

23. In tert-butyl halides, elimination is favoured over substitution therefore alkene is the only reaction product and no ether is formed.

\[
\begin{align*}
\text{CH}_3\text{C} & \quad \text{NaOC} & \quad \text{CH}_3 \\
\text{CH}_3 & \quad \text{C} & \quad \text{CH}_3 + \text{NaCl + CH}_3\text{C} & \quad \text{OH} \\
\text{CH}_3 & \quad \text{CH}_3 & \quad \text{CH}_3 \\
\end{align*}
\]

(tet-Butylchioride) (2-Methylprop-1-ene)

Distribution of marks
- Reaction (1½ mark)
- Explanation (1½ mark)

24.

Distribution of marks
- One mark for each step (1 \times 3 = 3 marks)

25. (A) and (C) are between C1 and C4. (B) is between C1 and C6.

Distribution of marks
- ½ mark for each correct identification (½ \times 3 = 1½ marks)
• Yes, compound is reducing in nature (½ mark)
• Explanation (1 marks)

26. (i) (2)

27. (i) (2)

28. Distribution of marks
• Graph for distribution of energy (2 marks)
• Explanation (3 marks)

or

Distribution of marks
• Graph for instantaneous rate (1 mark)
• Graph for average rate (1 mark)
• Explanation (3 marks)

29. A = Cu B = Cu \((\text{NO}_3)_2\) C = \([\text{Cu(NH}_3)_4]^{2+}\) D = \(\text{CO}_2\) E = \(\text{CaCO}_3\)

(i) \(\text{CuCO}_3 \xrightarrow{\Delta} \text{CuO} + \text{CO}_2\)
 \[(D)\]

(ii) \(2\text{CuO} + \text{CuS} \rightarrow 3\text{Cu} + \text{SO}_2\)
 \[(A)\]

(iii) \(3\text{Cu} + 8\text{HNO}_3 \rightarrow 3\text{Cu} \,(\text{NO}_3)_2 + 2\text{NO}_2 + 2\text{H}_2\text{O}\)
 \[(B)\]

(iv) \(\text{Cu}^{2+} (\text{aq}) + 4\text{NH}_3(\text{aq}) \rightarrow [\text{Cu(NH}_3)_4]^{2+} (\text{aq})\)
 \[(C)\]
 Deep blue

(v) \(\text{Ca(OH)}_2(\text{aq}) + \text{CO}_2 \rightarrow \text{CaCO}_3 + \text{H}_2\text{O} \rightarrow \text{Ca(HCO}_3)_2\)
 \[(D)\]
 \[(E)\]

Distribution of marks
• Identification (5×½ = 2½ marks)
• Reactions (5×½ = 2½ marks)

or

\(\text{A = KMnO}_4\) \(\text{B = K}_2\text{MnO}_4\) \(\text{C = MnO}_2\) \(\text{D = MnCl}_2\)

\(\text{KMnO}_4 \xrightarrow{\Delta} \text{K}_2\text{MnO}_4 + \text{MnO}_2 + \text{O}_2\)
 \[(A)\]
 \[(B)\]
 \[(C)\]

\(\text{MnO}_2 + \text{KOH} + \text{O}_2 \rightarrow 2\text{K}_2\text{MnO}_4 + 2\text{H}_2\text{O}\)
 \[(B)\]

\(\text{MnO}_2 + 4\text{NaCl} + 4\text{H}_2\text{SO}_4 \rightarrow \text{MnCl}_2 + 2\text{NaHSO}_4 + 2\text{H}_2\text{O} + \text{Cl}_2\)
 \[(D)\]
Distribution of marks

- Identification (½×4 = 2 marks)
- Reactions (½×3 = 1½ marks)
- Explanation (1½ marks)

30. \[\begin{align*}
\text{CH}_3\text{CH}=\text{C}&&\text{CH}_3
\end{align*} \]

\[, (i) \text{O} (ii) \text{Zn/H}_2\text{O} \rightarrow \text{CH}_3\text{C}-\text{CHO} + \text{O}==\text{C}-\text{CH}
\]

\(\text{(A) 2-Methylbut-2-ene} \quad \text{(B)} \quad \text{(C)} \)

Distribution of marks

- Identification (½ + ½ + ½ = 1½ marks)
- Reason (½ + ½ + ½ = 1½ marks)
- Reactions (2 × 1 = 2 marks)

Other isomers of ‘A’ will not give products corresponding to the given test.

or

\[\begin{align*}
\text{CH}_3&&\text{CHO}
\end{align*} \]

\[\xrightarrow{\text{NaOH (aq.)}} \]

\[\text{CH}_3\text{C}==\text{C}==\text{CH}&&\text{CHO} \rightarrow \text{CH}_3\text{CH}=\text{C}==\text{CH}+\text{H}==\text{C}==\text{CH}
\]

Names:
(a) Aldol condensation
(b) Cannizaro’s reaction

Distribution of marks

- Electron withdrawing effect of >C==O group (1 mark)
- For showing resonance (1 mark)
- Writing 2 products in each reaction (½ × 4 = 2 mark)
- Names of two reactions (½ × 2 = 1 mark)
MODEL QUESTION PAPER-II

CHEMISTRY

Class XII

Time : 3 Hours
Maximum Marks : 70

General Instructions :
(i) All the questions are compulsory.
(ii) Questions 1 to 4, carry one mark each and questions 5 to 6, carry 2 marks each.
(iii) Questions 7 to 10 are short answer questions carrying 1 mark each.
(iv) Questions 11 to 16 are short answer questions carrying 2 mark each.
(v) Questions 17 to 25 are also short answer questions carrying 3 marks each.
(vi) Questions 26 to 27 are assertion- reason questions carrying 2 marks each.
(vii) Questions 28 to 30 are long answer questions carrying 5 marks each.
(viii) Use log tables for calculations if necessary.

Note : Choose one correct option for questions 1 to 4.

1. Which of the following statements is not true for hexagonal close packing? (1)
 (i) The coordination number is 12
 (ii) It has 74% packing efficiency
 (iii) Octahedral voids of second layer are covered by spheres of the third layer.
 (iv) In this arrangement third layer is identical with the first layer.

2. Brine is electrolysed using inert electrodes. The reaction at anode is ______. (1)
 (i) \(\text{Cl}^- (\text{aq.}) \rightarrow \frac{1}{2} \text{Cl}_2 (g) + e^- \); \(E_{\text{Cell}}^\circ = 1.36 \text{V} \)
 (ii) \(2\text{H}_2\text{O} (l) \rightarrow \text{O}_2 (g) + 4\text{H}^+ + 4e^- \); \(E_{\text{Cell}}^\circ = 1.23 \text{V} \)
 (iii) \(\text{Na}^+ (\text{aq.}) + e^- \rightarrow \text{Na}(s) \); \(E_{\text{Cell}}^\circ = 2.71 \text{V} \)
 (iv) \(\text{H}^+ (\text{aq.}) + e^- \rightarrow \frac{1}{2} \text{H}_2 (g) \); \(E_{\text{Cell}}^\circ = 0.00 \text{V} \)

3. In a qualitative analysis when H\(_2\)S is passed through the solution of a salt acidified with HCl, a black precipitate is obtained. On boiling the precipitate with dil. HNO\(_3\), it forms a solution of blue colour. Addition of excess of aqueous solution of ammonia to this solution will give ________.
 (i) Deep blue precipitate of Cu (OH)\(_2\).
 (ii) Deep blue solution of [Cu (NH\(_3\))\(_4\)]\(^{2+}\).
 (iii) Deep blue solution of Cu(NO\(_3\))\(_2\).
 (iv) Deep blue solution of Cu(OH)\(_2\).Cu(NO\(_3\))\(_2\).
4. What is the IUPAC name of the compound \(\text{CH}_3-\text{CH}_3-\text{CH}_2-\text{CH}_2-N-\text{CH}_3 \)?

 (i) N, N-Dimethylaminobutane
 (ii) N, N-Dimethylbutan-1-amine
 (iii) N, N-Dimethylbutylamine
 (iv) N-methylpentan-2-amine

Note: Choose two correct options for questions 5 and 6.

5. \(E_{\text{Cell}}^\circ \) for some half cell reactions are given below. On the basis of these mark the correct answer.

 (a) \(\text{H}^+ \text{(aq.)} + e^- \rightarrow \frac{1}{2} \text{H}_2 \text{(g)} ; \quad E_{\text{Cell}}^\circ = 0.00 \text{V} \)
 (b) \(2\text{H}_2\text{O} \text{(l)} \rightarrow \text{O}_2 \text{(g)} + 4\text{H}^+ \text{(aq.)} + 4e^- ; \quad E_{\text{Cell}}^\circ = 1.23 \text{V} \)
 (c) \(2\text{SO}_4^{2-} \text{(aq.)} \rightarrow \text{S}_2\text{O}_8^{2-} \text{(aq.)} + 2e^- ; \quad E_{\text{Cell}}^\circ = 1.96 \text{V} \)

 (i) In dilute sulphuric acid solution, hydrogen will be reduced at cathode.
 (ii) In concentrated sulphuric acid solution, water will be oxidised at anode.
 (iii) In dilute sulphuric acid solution, \(\text{SO}_4^{2-} \) ion will be oxidised to tetrathionate ion at anode.
 (iv) In dilute sulphuric acid solution, water will be oxidised at anode.

6. What happens when a lyophilic sol is added to a lyophobic sol?

 (i) Lyophobic sol is protected.
 (ii) Lyophilic sol is protected.
 (iii) Film of lyophilic sol is formed over lyophobic sol.
 (iv) Film of lyophobic sol is formed over lyophilic sol.

7. How do emulsifying agents stabilise emulsion?

8. On what principle is the zone refining based?

9. Why cross links are required in rubber to have practical applications?

10. Name an artificial sweetener which has dipeptide linkage between two aminoacids.

11. Why does electrical conductivity of semiconductors increase with rise in temperature?

12. In the ring test of \(\text{NO}_3^- \) ion, \(\text{Fe}^{2+} \) ion reduces nitrate ion to nitric oxide, which combines with \(\text{Fe}^{3+} \text{(aq.)} \) ions to form brown complex. Write reactions involved in the formation of brown ring.
13. Arrange the following complex ions in increasing order of crystal field splitting energy Δ_0.

$[\text{Cr(Cl)}_6]^{3-}$, $[\text{Cr(CN)}_6]^{3-}$, $[\text{Cr(NH}_3)_6]^{3+}$

14. Explain why allyl chloride is hydrolysed more readily than n-propyl chloride?

15. Write name(s) of starting materials for the following polymer and identify its monomer unit.

![Polymer structure]

16. What is the advantage of using antihistamines instead of antacids in the treatment of hyperacidity?

17. When 1 mol of NaCl is added to 1 litre of water, the boiling point of water increases. On the other hand, addition of 1 mol of methyl alcohol to one litre of water decreases the boiling point of water. Explain why does this happen.

18. Value of standard electrode potential for the oxidation of Cl$^-$ ion is more positive than that of water, even then in the electrolysis of aqueous sodium chloride solution, why is Cl$^-$ oxidised at anode instead of water?

19. How copper is extracted from low grade copper ores?

20. Calculate the volume of 0.1 M NaOH solution required to neutralise the products formed by dissolving 1.1 g of P_4O_6 in H_2O.

21. A complex of the type $[\text{M (AA)}_2 \text{X}_2]^{n+}$ is known to be optically active. What does this indicate about the structure of the complex? Give one example of such complex.

22. Predict the major product formed on adding HCl to isobutylene and write the IUPAC name of the product. Explain the mechanism of the reaction.

23. Explain why rate of reaction of Lucas reagent with three classes of alcohols different? Give chemical equations wherever required.

24. A primary amine, R—NH$_2$ can be reacted with alkyl halide, RX, to get secondary amine, R$_2$NH, but the only disadvantage is that 3$^\circ$ amine and quaternary ammonium salts are also obtained as side products. Can you suggest a method where CH$_3$NH$_2$ forms only 2$^\circ$ amine?

25. Label the glucose and fructose units in the following disaccharide and identify anomeric carbon atoms in these units. Is the sugar reducing in nature? Explain.
Note: In question 26 and 27. A statement of assertion followed by a statement of reason is given. Choose the correct answer out of the option given below each equation.

26. **Assertion**: When NaCl is added to water a depression in freezing point is observed.

Reason: The lowering of vapour pressure of a solution causes depression in the freezing point. (2)

(i) Assertion and reason both are correct statements and reason is correct explanation for assertion.

(ii) Assertion and reason both are correct statements but reason is not correct explanation for assertion.

(iii) Assertion is correct statement but reason is wrong statement.

(iv) Assertion and reason both are incorrect statements.

(v) Assertion is wrong statement but reason is correct statement.

27. **Assertion**: Bond angle in ethers is slightly less than the tetrahedral angle.

Reason: There is repulsion between the two bulky (—R) groups. (2)

(i) Assertion and reason both are correct statements and reason is correct explanation for assertion.

(ii) Assertion and reason both are correct statements but reason is not correct explanation for assertion.

(iii) Assertion is correct statement but reason is wrong statement.

(iv) Assertion and reason both are incorrect statements.

(v) Assertion is wrong statement but reason is correct statement.

28. Explain why does the enthalpy change of a reaction remain unchanged even when a catalyst is used in the reaction. (5)

or

With the help of an example explain what is meant by pseudo first order reaction.

29. When a chromite ore (A) is fused with sodium carbonate in free excess of air and the product is dissolved in water, a yellow solution of compound (B) is obtained. After treatment of this yellow solution with sulphuric acid, compound (C) can be crystallised from the solution. When compound (C) is treated with KCl solution, orange crystals of compound (D) crystallise out. Identify compounds A to D and also explain the reactions. (5)

or
An oxide of manganese (A) is fused with KOH in the presence of an oxidising agent and dissolved in water. A dark green solution of compound (B) is obtained. Compound (B) disproportionates in neutral or acidic solution to give purple compound (C). Alkaline solution of (C) oxidises potassium iodide solution to a compound (D) and compound (A) is also formed. Identify compounds A to D and also explain the reactions involved. (5)

30. An aromatic compound ‘A’ [Molecular formula C₈H₈O] gives positive 2, 4-DNP test. The compound gives a yellow precipitate of compound ‘B’ on treatment with iodine and sodium hydroxide solution. It does not give Tollens’ or Fehling’s test. On drastic oxidation with potassium permanganate it forms a carboxylic acid ‘C’ [Molecular formula C₇H₆O₂] which is also formed along with the yellow compound in the above reaction. Identify compounds A, B and C and write all the reactions involved. (5)

or

Guidelines for Evaluation (Marking Scheme)

1. (iii) (1)
2. (i) (1)
3. (ii) (1)
4. (ii) (1)
5. (i), (iv) (2)
6. (i), (iii) (2)
7. Emulsifying agent forms an interfacial film between suspended particles and the particles of dispersion medium. (1)
8. Zone refining is based on the principle that impurities are more soluble in melt than in the solid state of metals. (1)
9. Cross links bind the polymer chains. These help the polymer to come to the original position after the stretching force is released. Thus, increase its elastomeric properties. (1)
10. Aspartame (1)
11. In semiconductors, the gap between the valence band and the conduction band is small. On increasing temperature, more electrons can jump from valence band to conduction band and conductivity increases. (2)

12. \[\text{NO}_3^- + 3\text{Fe}^{2+} + 4\text{H}^+ \rightarrow \text{NO} + 3\text{Fe}^{3+} + 2\text{H}_2\text{O} \]
 \[[\text{Fe(H}_2\text{O})_6]^{2+} + \text{NO} \rightarrow [\text{Fe(H}_2\text{O})_5(\text{NO})]^3+ + \text{H}_2\text{O} \]

Distribution of marks
- 1 mark for each equation (1 ×2 = 2 marks)

13. Increasing order is \[[\text{Cr(Cl)}_6]^{3-} < [\text{Cr(NH}_3)_6]^{3+} < [\text{Cr(CN)}_6]^{3-} \]

Distribution of marks
- Correct order (2 marks)

14. Allyl chloride shows high reactivity as the carbocation formed by hydrolysis is stabilised by resonance where as no resonance stabilisation of carbocation formed by n-propyl chloride is possible. (2 makrs)

15. \[
\begin{array}{c}
\text{H} \\
\text{N} \\
\text{N} \\
\text{N} \\
\text{N} \\
\text{N} \\
\text{NH}_3 \\
\text{NH}_2 \\
\text{NH}_2 \\
\text{CH}_2\text{OH}
\end{array}
\]
(Monomer, an intermediate)
16. Antacids control only the symptoms and not the cause. They work by neutralising the acid produced in the stomach. Antihistamines control the cause of production of more acid. These suppress the action of histamine which stimulates secretion of pepsin and HCl in the stomach. Antihistamines prevent the binding of histamine with its receptors present in the stomach wall. As a result acid production is lowered and are thus better treatment.

17. NaCl is a non volatile solute. Addition of NaCl in water therefore lowers the vapour pressure of water. As a result boiling point of water increases. Methyl alcohol on the other hand is more volatile than water. Therefore, its addition increases the total vapour pressure over the solution and a decrease in boiling point of water results.

18. Under the conditions of electrolysis of aqueous sodium chloride, oxidation of water at anode requires overpotential hence Cl– is oxidised instead of water.

19. Copper is extracted by hydrometallurgy from low grade copper ores. It is leached out using acid or bacteria. The solution containing Cu2+ is treated with scrap iron, Zn or H\textsubscript{2}.

\[
\text{Cu}^{2+} (aq) + H_2 (g) \rightarrow \text{Cu}(s) + 2H^+ (aq)
\]

\[
\text{Cu}^{2+} + \text{Fe}(s) \rightarrow \text{Fe}^{2+} (aq) + \text{Cu}(s)
\]

20. \(P_4O_6 + 6H_2O \rightarrow 4H_3PO_3\)

\[
[H_3PO_3 + 2NaOH \rightarrow Na_2HPO_3 + 2H_2O] \times 4
\]

\[
P_4O_6 + 8NaOH \rightarrow 4Na_2HPO_4 + 2H_2O
\]

1 mol \quad 8 mol

Product formed by 1 mol \(P_4O_6\) is neutralised by 8 mol NaOH

\[
\Rightarrow \text{Product formed by } \frac{1.1}{220} \text{ mol } P_4O_6 \text{ will be neutralised by } \frac{1.1}{220} \times 8 \text{ mol NaOH}
\]

Molarity of NaOH solution is 0.1 M

\[
\Rightarrow 0.1 \text{ mol NaOH is present in } 1 \text{ L solution}
\]
1. \[\frac{1.1}{220} \times 8 \text{ mol NaOH is present in } \frac{1.1 \times 8}{220 \times 0.1} = \frac{88}{220} = \frac{4}{10} = 0.4 \text{ L}\]

\[\text{solution} = 400 \text{ mL NaOH solution}\]

Distribution of marks
- Correct chemical equations \((\frac{1}{2} \times 3 = 1 \frac{1}{2} \text{ mark})\)
- Correct method of calculation \((1 \text{ mark})\)
- Correct answer \((\frac{1}{2} \text{ mark})\)

21. Since complex of the type \([\text{M(AA)}_2 X_2]^{n+}\) is optically active it indicates that complex has cis-octahedral structure. e.g. \(\text{cis-[Pt(en)}_2(\text{Cl})_2]^{2+}\) or \(\text{cis-[Cr(en)}_2(\text{Cl})_2]^+\).

Distribution of marks
- Electronic configuration in the presence of weak field ligand \((1 \text{ mark})\)
- Electronic configuration in the presence of strong field ligand \((1 \text{ mark})\)
- Explanation \((1 \text{ mark})\)

22. \[
\begin{align*}
\text{CH}_3\text{C} & \equiv \text{CH}_3 + \text{HCl} \rightarrow \text{CH}_3\text{C} & \equiv & \text{CH}_3 \\
\text{CH}_3 & & \text{Cl} & & \text{CH}_3
\end{align*}
\]

Isobutylene 2-Chloro-2-methylpropane

The mechanism involved in this reaction is as follows:

Step I:
\[
\begin{align*}
\text{CH}_3\text{C} & \equiv \text{CH}_2 \xrightarrow{\text{H}^+} \text{CH}_3\text{C} & \equiv & \text{CH}_3 \quad \text{CH}_3\text{C} & \equiv & \text{CH}_2 \\
\text{CH}_3 & & \text{CH}_3 & & \text{CH}_3 & & \text{CH}_3
\end{align*}
\]

Isobutylene 3° Carbocation (More stable) 1° Carbocation (Less stable)

Step II:
\[
\begin{align*}
\text{CH}_3\text{C} & \equiv \text{CH}_3 \xrightarrow{\text{Cl}^-} \text{CH}_3\text{C} & \equiv & \text{CH}_3 \\
\text{CH}_3 & & \text{Cl} & & \text{CH}_3 & & \text{CH}_3
\end{align*}
\]

Distribution of marks
- Structure of isobutylene \((\frac{1}{2} \text{ mark})\)
23. The reaction of alcohol with Lucas reagent proceeds through carbocation formation. More stable is the carbocation, faster is the reaction. Carbocation formed by 1° alcohol is least stable hence reaction is slow.

Distribution of marks
- Reaction \((\frac{1}{2} \times 3 = 1\frac{1}{2} \text{ mark})\)
- Reason \((1\frac{1}{2} \text{ mark})\)

24. \[\text{H}_2\text{CNH}_3 \xrightarrow{\text{KOH/CHCl}_3} \text{H}_2\text{CN} \xrightarrow{\text{H}_2/\text{Pd}} \text{H}_2\text{CNHCH}_3 \]

Carbylamine reaction is shown by 1° amine only which results in the formation of isocyanide. The isocynide on catalytic reduction will give a methyl group containing secondary amine.

Distribution of marks
- Writing correct reagent \((\frac{1}{2} + \frac{1}{2} = 1 \text{ mark})\)
- 1 mark for each step \((1 \times 2 = 2 \text{ marks})\)

25. C1 of glucose unit and C2 of fructose unit are anomeric carbon atoms in this disaccharide. The disaccharide is non reducing sugar because —OH groups attached to anomeric carbon atoms are involved in the formation of glycoside bond.

Distribution of marks
- Recognising glucose and fructose units correctly \((\frac{1}{2} \text{ mark})\)
- Identification of anomeric carbon \((\frac{1}{2} \times 2 = 1 \text{ mark})\)
- Proper explanation for non reducing nature \((1\frac{1}{2} \text{ marks})\)

26. (i) \(1\)

27. (v) \(1\)

28. **Distribution of marks**
- Correct diagram \((2 \text{ marks})\)
- Correct explanation \((3 \text{ marks})\)

Distribution of marks
- Correct example \((2 \text{ marks})\)
- Correct explanation \((3 \text{ marks})\)
29. \[A = \text{FeCr}_2\text{O}_4 \quad B = \text{Na}_2\text{CrO}_4 \quad C = \text{Na}_2\text{Cr}_2\text{O}_7 \cdot 2\text{H}_2\text{O} \quad D = \text{K}_2\text{Cr}_2\text{O}_7 \]

\[
4\text{FeCr}_2\text{O}_4 + 8\text{Na}_2\text{CO}_3 + 7\text{O}_2 \rightarrow 8\text{Na}_2\text{CrO}_4 + 2\text{Fe}_2\text{O}_3 + 8\text{CO}_2
\]

\[
2\text{NaCrO}_4 + 2\text{H}^+ \rightarrow \text{Na}_2\text{Cr}_2\text{O}_7 + 2\text{Na}^+ + \text{H}_2\text{O}
\]

\[
\text{Na}_2\text{Cr}_2\text{O}_7 + 2\text{KCl} \rightarrow \text{K}_2\text{Cr}_2\text{O}_7 + 2\text{NaCl}
\]

or

\[A = \text{MnO}_2 \quad (B) \text{K}_2\text{MnO}_4 \quad (C) \text{KMnO}_4 \quad (D) \text{KIO}_3 \]

\[
2 \text{MnO}_2 + 4\text{KOH} + \text{O}_2 \rightarrow 2\text{K}_2\text{MnO}_4 + 2\text{H}_2\text{O} \quad (A)
\]

\[
3\text{MnO}_4^{2-} + 4\text{H}^+ \rightarrow 2\text{MnO}_4^{-} + \text{MnO}_2 + 2\text{H}_2\text{O} \quad (C)
\]

\[
2\text{MnO}_4^{-} + \text{H}_2\text{O} + \text{KI} \rightarrow 2\text{MnO}_2 + 2\text{OH}^- + \text{KIO}_3 \quad (A) \quad (D)
\]

Distribution of marks

- \(\frac{1}{2} \) mark for each correct identification \((\frac{1}{2} \times 4 = 2 \text{ marks}) \)
- 1 mark for each correct chemical equation \((1 \times 3 = 3 \text{ marks}) \)
 with explanation

30. **Hint**:

![Diagram](image-url)
Distribution of marks

- Recognising presence of carbonyl group (½ mark)
- Recognising presence of ketonic group (½ mark)
- Structure of 2,4–DNP derivative and benzoic acid (1 mark)
- Structures of compounds ‘A’, ‘B’ and ‘C’ (1 × 3 = 3 marks)

or

\[
\begin{align*}
\text{CH}_3\text{C}≡\text{C}−\text{H} & \xrightarrow{\text{Hg}^{2+}/\text{H}_2\text{SO}_4} \text{CH}_3\text{C}−\text{CH}_\text{2} \\
\text{(A)} & \text{NaHSO}_3 \\
\text{(B)} & \text{[O]} \\
\text{CH}_3\text{C}−\text{O}\text{SO}_3\text{Na} & \xrightarrow{\text{Hydrogensulphite addition}} \text{H}_2\text{C}−\text{C}−\text{OH} \\
\text{(D)} & \text{OH} \\
& \text{CH}_3\text{COOH} + \text{HCOOH} \\
\text{(C)} &
\end{align*}
\]

Compound B is a ketone therefore Fehling’s test and tollens tests are negative.

Distribution of marks

- For identification of compounds ‘A’, ‘B’, ‘C’, ‘D’ half mark of each (½ × 4 = 2 marks)
- 1 Mark each for writing three chemical equation (1 × 3 = 3 marks)